C. Lapeyre et al. / Tetrahedron Letters 44 (2003) 2445–2447
2447
3. Grisebach, H. The Biochemistry of Plants; Academic
Press, 1981; Vol. 7, pp. 457–478.
3H), 4.20 (m, 2H), 6.16 (dd, J=17.2 Hz, J=23.4 Hz,
1H), 6.67 (d, J=8.2 Hz, 1H), 6.83 (dd, J=8.2 Hz, J=2.0
Hz, 1H), 6.92 (d, J=2.0 Hz, 1H), 7.17 (s, 1H), 7.38 (m,
7H), 7.69 (dd, J=7.4 Hz, J=1.2 Hz, 4H); 13C NMR (50
MHz, CDCl3), l 16.38 (d, J=6.9 Hz), 19.80 (s), 23.08 (s),
26.57 (s), 29.13 (s), 40.88 (s), 55.39 (s), 62.46 (d, J=6.7
Hz), 110.92 (s), 115.04 (d, J=155.2 Hz), 120.36 (s),
122.00 (s), 127.64 (s), 128.04 (s), 129.82 (s), 133.01 (s),
135.28 (s), 147.84 (s), 148.44 (d, J=6.3 Hz), 150.88 (s),
170.70 (s); 31P NMR (81 MHz, CDCl3), l 46.24 (s).
Selected data for 4b: Rf=0.25 (EtOAc), 1H NMR (250
MHz, CDCl3) l 1.09 (s, 9H), 1.36 (t, J=7.0 Hz, 3H), 1.98
(s, 3H), 2.94 (m, 2H), 3.48 (m, 2H), 4.18 (m, 2H), 6.16
(dd, J=17.1 Hz, J=23.5 Hz, 1H), 6.76 (d, J=8.5 Hz,
2H), 7.14 (s, 1H), 7.27 (d, J=8.5 Hz, 2H), 7.39 (m, 7H),
7.69 (d, J=7.6 Hz, 4H); 13C NMR (50 MHz, CDCl3), l
16.40 (d, J=6.5 Hz), 19.46 (s), 23.06 (s), 26.46 (s), 29.24
(s), 40.65 (s), 62.26 (d, J=6.7 Hz), 115.23 (d, J=154.0
Hz), 120.27 (s), 127.40 (d, J=23.2 Hz), 127.97 (s), 129.55
(s), 130.19 (s), 132.22 (s), 135.40 (s), 147.84 (d, J=31.4
Hz), 158.01 (s), 170.79 (s); 31P NMR (81 MHz, CDCl3),
l 46.24 (s).
4. Duran, E.; Duran, H.; Cazaux, L.; Gorrichon, L.; Tisnes,
P.; Sarni, F. Bull. Soc. Chim. Fr. 1987, 1, 143–148.
5. Kennedy, K.; Baltas, M.; Douglas, K. T.; Duran, H.;
Embrey, K. J.; Giraudon, J. G.; McKie, J. H.; Grima-
Pettenati, J.; Gorrichon, L. J. Enzym. Inhib. 1998, 14,
217–237.
6. Witter, D. J.; Vederas, J. C. J. Org. Chem. 1996, 61,
2613–2623.
7. Hirschmann, R.; Yager, K. M.; Taylor, C. M.; Wither-
ington, J.; Sprengeler, P. A.; Phillips, B. W.; Moore, W.;
Smith, A. B. J. Am. Chem. Soc. 1997, 119, 8177–8190.
8. Morise, X.; Savignac, P.; Guillemin, J. C.; Denis, J. M.
Synth. Commun. 1991, 21, 793–798.
9. Malachowski, W. P.; Coward, J. K. J. Org. Chem. 1994,
59, 7616–7624.
10. Hoye, R. C.; Baigorria, A. S.; Danielson, M. E.; Prag-
man, A. A.; Rajapakse, H. A. J. Org. Chem. 1999, 64,
2450–2453.
11. (a) Ingrassia, L. Thesis, University Paul Sabatier Tou-
louse III, 2000; (b) General procedure for the transesterifi-
cation as shown in Scheme 3. Synthesis of silylated
phosphonothioester 4a–d. To a solution of silylated phos-
phonodiester (1.8 mmol) in anhydrous dichloromethane
(10 mL) under a nitrogen atmosphere, was added oxalyl
chloride (8.6 mmol) and the mixture was stirred at room
temperature for 20 h. The excess of oxalyl chloride and
dichloromethane were removed under vacuum to give
quantitatively phosphonochloridate. To a solution of N-
acetylcysteamine (3.9 mmol) in dichloromethane (2 mL)
was added a mixture of previous phosphonochloridate
(1.8 mmol) and triethylamine (3.8 mmol) in
dichloromethane (1 mL). The reaction mixture was
stirred at room temperature for 16 h. Dichloromethane
was evaporated under vacuum. The crude material
obtained was dissolved in ethyl acetate and filtered. The
filtrate was washed with a saturated solution of sodium
bicarbonate, then water. The organic layer was dried over
sodium sulfate and concentrated. The crude mixture was
purified by column chromatography on silica gel (eluent:
EtOAc) to provide desired product 4a (0.72 g, 67% yield),
4b (0.60 g, 49% yield), 4c (0.70 g, 62% yield), 4d (0.20 g,
37% yield).
Selected data for 4c: Rf=0.25 (EtOAc), 1H NMR (250
MHz, CDCl3) l 1.08 (s, 9H), 1.37 (t, J=7.0 Hz, 3H), 1.98
(s, 3H), 2.96 (m, 2H), 3.45 (s, 6H), 3.52 (m, 2H), 4.19 (m,
2H), 6.18 (dd, J=17.1 Hz, J=23.2 Hz, 1H), 6.58 (s, 2H),
7.16 (s, 1H), 7.33 (m, 7H), 7.68 (d, J=7.6 Hz, 4H); 13C
NMR (50 MHz, CDCl3), l 16.39 (d, J=6.9 Hz), 20.17
(s), 23.11 (s), 26.70 (s), 29.16 (s), 40.88 (s), 55.25 (s), 62.46
(d, J=7.0 Hz,), 105.06 (s), 115.20 (d, J=155.4 Hz),
126.64 (s), 127.13 (s), 129.26 (s), 134.11 (s), 135.05 (s),
148.76 (d, J=6.4 Hz), 151.12 (s), 170.70 (s); 31P NMR (81
MHz, CDCl3), l 45.96 (s).
Selected data for 4d: Rf=0.35 (EtOAc), 1H NMR (250
MHz, CDCl3) l 1.34 (t, J=7.0 Hz, 3H), 1.94 (s, 3H), 2.91
(m, 2H), 3.47 (m, 2H), 3.91 (s, 6H), 4.17 (m, 2H), 6.23
(dd, J=17.2 Hz, J=23.2 Hz, 1H), 6.82 (d, J=8.2 Hz,
1H), 7.00 (s, 1H), 7.04 (d, J=8.2 Hz, 1H), 7.23 (s, 1H)
7.38 (dd, J=17.2 Hz, J=23.6 Hz, 1H); 13C NMR (50
MHz, CDCl3), l 16.36 (d, J=6.8 Hz), 23.06 (s), 29.18 (s),
40.74 (s), 55.91 (s), 62.37 (d, J=6.9 Hz), 109.39 (s),
110.94 (s), 115.19 (d, J=155.2 Hz), 122.73 (s), 127.21 (d,
J=23.6 Hz), 148.11 (d, J=6.4 Hz), 149.21 (s), 151.37 (s),
170.66 (s); 31P NMR (81 MHz, CDCl3), l 45.99 (s).
12. (a) Picq, D.; Anker, D. Carbohydr. Res. 1987, 166, 309–
313; (b) McClinton, M. A. Aldrichim. Acta 1995, 28,
31–35.
Selected data for 4a: Rf=0.62 (EtOAc:MeOH, 9:1), 1H
NMR (250 MHz, CDCl3) l 1.10 (s, 9H), 1.37 (t, J=7.0
Hz, 3H), 1.98 (s, 3H), 2.93 (m, 2H), 3.51 (m, 2H), 3.61 (s,