10.1002/ejoc.201601336
European Journal of Organic Chemistry
COMMUNICATION
acridanes such as 16o and 16p using this efficient one-pot
procedure.
Acknowledgements
We thank the Engineering and Physical Sciences Research
Council for postdoctoral funding (T.E.H.; EP/J000124/1) and Dr
A. C. Whitwood (University of York) for assistance with X-ray
crystallography.
Keywords: acridanes • copper • catalysis • cross-
dehydrogenative coupling • one-pot
[1]
[2]
a) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53,
74-100 and references therein; b) C.-J. Li, Acc. Chem. Res. 2009, 42,
335-344.
a) P. Drouhin, R. J. K. Taylor, Eur. J. Org. Chem. 2015, 2333-2336; b)
T. E. Hurst, R. M. Gorman, P. Drouhin, A. Perry, R. J. K. Taylor, Chem.
Eur. J. 2014, 20, 14063-14073; c) J. E. M. N. Klein, A. Perry, D. S.
Pugh, R. J. K. Taylor, Org. Lett. 2010, 12, 3446-3449; d) A. Perry, R. J.
K. Taylor, Chem. Commun. 2009, 3249-3251; See also e) Y.-X. Jia, E.
P. Kꢀndig, Angew. Chem. Int. Ed. 2009, 48, 1636-1639; f) C. Dey, E.
For a recent review of acridines and their derivatives see: A. Schmidt,
M. Liu, Adv. Het. Chem. 2015, 115, 287-353.
[3]
[4]
[5]
[6]
[7]
P. Tessier, D. V. Smil, A. Wahhab, S. Leit, J. Rahil, Z. Li, R. Déziel, J.
M. Besterman, Bioorg. Med. Chem. Lett. 2009, 19, 5684-5688.
B. L. Johnson, M. Patel, J. D. Rodgers, H. Wang, US Pat.,
US6593337B1, 2003.
Scheme 7. Scope of the one-pot α-arylation/cyclisation approach to acridanes.
C. Kaiser, P. J. Fowler, D. H. Tedeschi, B. M. Lester, E. Garvey, C. L.
Zirkle, E. A. Nodiff, A. J. Saggiomo, J. Med. Chem. 1974, 17, 57-62.
S. N. Bagriantsev, K.-H. Ang, A. Gallardo-Godoy, K. A. Clark, M. R.
Arkin, A. R. Renslo, D. L. Minor, Jr., ACS Chem. Biol. 2013, 8, 1841-
1851.
Conclusions
In summary, we report
dehydrogenative coupling approach to acridanes and related
heterocycles from readily available 2-[2-
a
Cu-catalysed radical cross-
[8]
a) H. Akhavan-Tafti, R. DeSilva, Z. Arghavani, R. A. Eickholt, R. S.
Handley, B. A. Schoenfelner, K. Sugioka, Y. Sugioka, A. P. Schaap, J.
Org. Chem. 1998, 63, 930-937; b) H. Akhavan-Tafti, R. DeSilva, R.
Eickholt, R. Handley, M. Mazelis, M. Sandison, Talanta 2003, 60, 345-
354; for recent examples see c) M. Di Fusco, A. Quintavalla, M.
Lombardo, M. Guardigli, M. Mirasoli, C. Trombini, A. Roda, Anal.
Bioanal. Chem. 2015, 407, 1567-1576 and references therein.
a) S. N. Dhuri, Y.-M. Lee, M. Sook Seo, J. Cho, D. D. Narulkar, S.
Fukuzumi, W. Nam, Dalton Trans. 2015, 44, 7634-7642 and references
therein; b) Y. Han, Y.-M. Lee, M. Mariappan, S. Fukuzumi, W. Nam,
Chem. Commun. 2010, 46, 8160-8162.
(arylamino)aryl]malonates. This highly atom-economical method
uses inexpensive Cu(2-ethylhexanoate)2 as the catalyst under
mild conditions, thus avoiding many of the problems associated
with existing classical strategies for the synthesis of acridanes.
The diester moiety resulting from the oxidative coupling reaction
serves as a useful handle for further functionalisation. In addition,
we have established a streamlined protocol involving the in situ
formation of the cyclisation precursor by the α-arylation of diethyl
[9]
malonate with
a
2-bromodiarylamine under Pd-catalysis,
[10] a) G. Méhes, H. Nomura, Q. Zhang, T. Nakagawa, C. Adachi, Angew.
Chem. Int. Ed. 2012, 51, 11311-11315; for recent examples see b) L.
Ding, S.-C. Dong, Z.-Q. Jiang, H. Chen, L.-S. Liao, Adv. Funct. Mater.
2015, 25, 645-650 and references therein.
followed by subsequent Cu-catalysed cyclisation to give the
acridanes in a single pot. Further studies will be carried out to
utilise this new methodology in target synthesis.
[11] A. Raskosova, R. Stößer, W. Abraham, Chem. Commun. 2013, 49,
3964-3966 and references therein.
[12] a) A. A. Kulago, E. M. Mes, M. Klok, A. Meetsma, A. M. Brouwer, B. L.
Feringa, J. Org. Chem. 2010, 75, 666-679; b) A. Vetter, W. Abraham,
Org. Biomol. Chem. 2010, 8, 4666-4681.
Experimental Section
Representative procedure for the copper-catalysed synthesis of
acridanes: To a solution of the cyclisation precursor 15 (1.00 mmol) in
toluene (10 mL) was added copper(II) 2-ethylhexanoate (35.0 mg, 0.100
mmol). The reaction mixture was heated at reflux (oil bath at 120 °C) for
17 h with the condenser left open to the air. After cooling to rt, saturated
NH4Cl (25 mL) was added and the aqueous phase extracted with EtOAc
(3 × 25 mL). The combined organics were washed with 10% NH4OH (25
mL), dried over MgSO4, filtered, and concentrated in vacuo. Purification
by flash column chromatography, eluting with EtOAc/hexane, afforded
the title compound 16 (see SI for details).
[13] a) D. V. Jawale, E. Gravel, N. Shah, V. Dauvois, H. Li, I. N. N.
Namboothiri, E. Doris, Chem. Eur. J. 2015, 21, 7039-7042 and
references therein; b) B. Zhang, Y. Cuia, N. Jiao, Chem. Commun.
2012, 48, 4498-4500.
[14] a) G. Pandey, D. Jadhav, S. K. Tiwari, B. Singh, Adv. Synth. Catal.
2014, 356, 2813-2818; b) Á. Pintér, M. Klussmann, Adv. Synth. Catal.
2012, 354, 701-711.
[15] a) T. Stopka, L. Marzo, M. Zurro, S. Janich, E.-U. Würthwein, C. G.
Daniliuc, J. Alemán, O. G. Mancheño, Angew. Chem. Int. Ed. 2015, 54,
This article is protected by copyright. All rights reserved.