2986
S. Witayakran et al. / Tetrahedron Letters 48 (2007) 2983–2987
Table 5. Reaction of 1-acetoxy-1,3-butadiene with a variety of 1,4-
benzohydroquinone
2004, 17, 973–977; (h) d’Acunzo, F.; Galli, C.; Gentili, P.;
Sergi, F. New J. Chem. 2006, 30, 583–591.
3. (a) Niedermeyer, T. H.; Mikolasch, A.; Lalk, M. J. Org.
Chem. 2005, 70, 2002–2008; (b) Riva, S. Trends Biotechnol.
2006, 24, 219–226; (c) Ciecholewski, S.; Hammer, E.;
Manda, K.; Bose, G.; Nguyen, V. T. H.; Langer, P.;
Schauer, F. Tetrahedron 2005, 61, 4615–4619; (d) Kuris-
awa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S.
Biomacromolecules 2003, 4, 1394–1399; (e) Mikolasch,
A.; Hammer, E.; Jonas, U.; Popowski, K.; Stielow, A.;
Schauer, F. Tetrahedron 2002, 58, 7589–7593; (f) Hosny,
M.; Rosazza, J. J. Agric. Food Chem. 2002, 50, 5539–5545;
(g) Scha¨fer, A.; Specht, M.; Hetzheim, A.; Francke, W.;
Schauer, F. Tetrahedron 2001, 57, 7693–7699; (h) Manda,
K.; Hammer, E.; Mikolasch, A.; Niedermeyer, T.; Dec, J.;
Jones, A. D.; Benesi, A. J.; Schauer, F.; Bollag, J.-M. J
Mol. Catal. B: Enzym. 2005, 35, 86–92; (i) Leutbecher, H.;
Conrad, J.; Klaiber, I.; Beifuss, U. Synlett 2005, 3126–
3130.
O
O
CH3
OH
O
O
R1
R1
Laccase
0.1M acetate buffer pH 4.5
55 oC, 24 hours
OH
2
1
:
Entry
R1
Yielda (%)
1
2
3
4
5
H
67
75
81
67
69
CH3
OCH3
Br
Cl
a Isolated yield.
4. (a) Subramanian, S.; Ferreira, M. M. C.; Trsic, M. Struct.
Chem. 1998, 9, 47–57; (b) Powis, G. Free Radical. Biol.
Med. 1989, 6, 63–101; (c) Afrasiabi, Z.; Sinn, E.; Chen, J.;
Ma, Y.; Rheingold, A. L.; Zakharov, L. N.; Rath, N.;
Padhye, S. Inorg. Chim. Acta 2004, 357, 271–278.
5. Papageorgiou, V. P.; Assimopoulou, A. N.; Couladouros,
E. A.; Hepworth, D.; Nicolaou, K. C. Angew. Chem., Int.
Ed. 1999, 38, 270–300.
6. Machado, T. B.; Pinto, A. V.; Pinto, M. C.; Leal, I. C.;
Silva, M. G.; Amaral, A. C.; Kuster, R. M.; Netto-
dosSantos, K. R. Int. J. Antimicrob. Agents 2003, 21, 279–
284.
7. (a) dos Santos, A. F.; Ferraz, P. A.; Pinto, A. V.; Pinto,
M. d. C.; Goulart, M. O.; Sant’Ana, A. E. Int. J. Parasitol.
2000, 30, 1199–1202; (b) Gonlart, M. O. F.; Zani, C. L.;
Tonholo, J.; Freitas, L. R.; Abreu, F. C. d.; Oliveffa, A. B.;
Raslan, D. S.; Starling, S.; Chiari, E. Bioorg. Med. Chem.
Lett. 1997, 7, 2043–2048.
reactive p-benzoquinones gave very low yield of the
desired product at low temperature. Therefore, the
reaction was conducted at 55 ꢁC for p-naphthoquinone
synthesis, and 1 equiv of 1,4-benzohydroquinone and
2 equiv of diene were used (Table 5).16 The results in
Table 5 show that this reaction system can be used for
a one-pot synthesis of p-naphthoquinones in excellent
overall yield.
In summary, an efficient green chemistry synthesis of
naphthoquinone using laccase as an oxidant in aqueous
medium was developed. In this reaction, laccase was
used to oxidized o- and p-diphenols to generate o- and
p-quinones in situ which further underwent Diels–Alder
reaction and oxidation to form napthoquinone product.
This reaction system can yield naphthoquinones up to
80% depending on the exact structure of the starting
hydroquinone and diene.
8. Muller, G. H.; Lang, A.; Seithel, D. R.; Waldmann, H.
¨
Chem. Eur. J. 1998, 4, 2513–2522.
9. Patai, S. The Chemistry of the Quinonoid Compounds;
Interscience: London, New York, 1974.
10. Enzyme assay: Laccase from Trametes Villosa (EC
1.10.3.2) was obtained from Novozymes, North Carloina.
Laccase activity was determined by oxidation of 2,20-
azinobis-(3-ethylbenzyl thiozoline-6-sulfonate) (ABTS).17
The assay mixture contained 25 lM ABTS, 0.1 M sodium
acetate (pH 5.0), and a suitable amount of enzyme. The
oxidation of ABTS was followed by an absorbance
increase at 420 nm (e420 = 3.6 · 104 Mꢀ1 cmꢀ1). Enzyme
activity was expressed in units (U = lmol of ABTS
oxidized per minute).
Acknowledgements
The authors acknowledge financial support from the
IPST@GT student fellowship, NSF Research Experi-
ence for Undergraduate in Chemistry and Biochemistry
(award #: 0552722) and the Royal Thai Government
Scholarship.
References and notes
11. Typical experimental procedure for o-naphthoquinone syn-
thesis: In a 250-mL round-bottom flask, 20 ml of cold
0.10 M acetate buffer pH 4.5 and 2,3-dimethyl-1,3-buta-
diene (2) (0.7 g, 9 mmol) were mixed together. The flask
was then placed in an ice bath over a stirring plate. Next,
0.1 g (0.9 mmol) of catechol (1) dissolved in 20 mL of
0.10 M acetate buffer, and laccase (100 U) were added to
the flask drop-wise. In the next 3 h of the reaction, 100 U
of laccase was added each per hour.The reaction was then
stirred under room temperature. After 24 h of the
reaction, the reaction mixture was extracted by EtOAc.
The organic phase was combined, dried over MgSO4, and
evaporated. The resulting crude products were purified by
silica column chromatography, using ethyl acetate and
petroleum ether as an eluent to obtain the products 3
(47%). Most compounds have been previously reported
and characterized except the two compounds below. 4,7,8-
Trimethyl-1,2-naphthoquinone: orange solid; mp 118 ꢁC
1. (a) Thurston, C. F. Microbiology 1994, 140, 19–26; (b)
Yaropolov, A. I.; Skorobogat’ko, O. V.; Vartanov, S. S.;
Varfolomeyev, S. D. Appl. Biochem. Biotechnol. 1994, 49,
257–280.
2. (a) Burton, S. G. Curr. Org. Chem. 2003, 7, 1317–1331; (b)
Claus, H. Micron 2004, 35, 93–96; (c) Nicotra, S.; Intra,
A.; Ottolina, G.; Riva, S.; Danieli, B. Tetrahedron:
Asymmetry 2004, 15, 2927–2931; (d) Nicotra, S.; Crama-
rossa, M. R.; Mucci, A.; Pagnoni, U. M.; Riva, S.; Forti,
L. Tetrahedron 2004, 60, 595–600; (e) Zhang, X.; Eigen-
dorf, G.; Stebbing, D. W.; Mansfield, S. D.; Saddler, J. N.
Arch. Biochem. Biophys. 2002, 405, 44–54; (f) Leonowicz,
A.; Cho, N. S.; Luterek, J.; Wilkolazka, A.; Wojtas-
Wasilewska, M.; Matuszewska, A.; Hofrichter, M.;
Wesenberg, D.; Rogalski, J. J. Basic Microbiol. 2001, 41,
185–227; (g) Galli, C.; Gentili, P. J. Phys. Org. Chem.