Amino Acid Hydration from Ultrasonic Measurements
J. Phys. Chem. B, Vol. 114, No. 37, 2010 12161
(9) Hecht, D.; Tadesse, L.; Walters, L. J. Am. Chem. Soc. 1993, 115,
hydration while deprotonation of the carboxyl group increases
its hydration number ca. 3-fold is unknown and needs further
studies; the same concerns the negative value of the hydration
number of the H+ ion, mentioned already.
3336.
(10) Burakowski, A.; Glin´ski, J. Chem. Phys. 2007, 332, 336.
(11) Glin´ski, J.; Burakowski, A. Eur. Phys. J. Spec. Top. 2008, 154,
275.
(12) Burakowski, A.; Glin´ski, J. Acta Phys. Pol., A 2008, 114, A-39.
(13) Pasynski, A. Acta Physicochim. URSS 1938, 8, 385.
(14) Pasynski, A. Acta Physicochim. URSS 1947, 22, 137.
(15) Stuehr, J.; Yeager, E. In Physical Acoustics, Principles and Methods;
Mason, W. P., Ed.; Academic Press: New York, London, 1965; Vol. II,
Part A, p 370.
(16) Yasunaga, T.; Usui, I.; Iwata, K.; Miura, M. Bull. Chem. Soc. Jpn.
1964, 37, 1658.
(17) Juszkiewicz, A. Hydration of ions, molecules and macromolecules
in aqueous-ethanolic solutions. Prace IPPT PAN: Warsawa, 1985; Vol.
31/1985.
(18) Juszkiewicz, A. Arch. Acoust. 1985, 10, 151.
(19) Juszkiewicz, A. Arch. Acoust. 1990, 15, 349.
(20) Goto, S.; Isemura, T. Bull. Chem. Soc. Jpn. 1964, 37, 1697.
(21) Afanasiev, V. N.; Tyunina, E.Yu.; Ryabowa, V. V. J. Struct. Chem.
2004, 45, 838.
(22) Wadi, R. K.; Ramasami, P. J. Chem. Soc., Faraday Trans. 1997,
93, 243.
(23) Pal, A.; Kumar, S. J. Mol. Liq. 2005, 121, 148.
(24) Banipal, T. S.; Singh, G. J. Solution Chem. 2003, 32, 997.
(25) Hollenberg, J. L.; Ifft, J. B. J. Phys. Chem. 1982, 86, 1938.
(26) Natarajan, M.; Wadi, R. K.; Gaur, H. C. J. Chem. Eng. Data 1990,
35, 87.
(27) Singh, S. K.; Kishore, N. J. Solution Chem. 2004, 33, 1411.
(28) Parsons, M. T.; Koga, Y. J. Chem. Phys. 2005, 123, 234504.
(29) Galinski, E. A.; Stein, M.; Amendt, B.; Kinder, M. Comp. Biochem.
Phys., Part A: Physiology 1997, 117A, 357.
4. Conclusions
In this study, the speeds of sound and densities of diluted
aqueous solutions of chosen simple amino acids and their
hydrochlorides and sodium salts were measured at 25 °C. On
the basis of these data, the hydration numbers of the solutes
were calculated using the concept of Pasynski. These values
are very close to the literature nh values obtained by the same
technique and on the same order as those obtained by other
methods.
It was shown for diluted aqueous solutions of amino acids
that the effect of solutes on the hydration numbers is strongly
and directly dependent on the length of the solute molecules
and their constituents. It seems possible now to predict the
hydration numbers of amino acids and their salts only from their
structural formulas.
It was also tested how the pH of the system affects the
calculated hydration numbers. It should be stressed that for
reacting systems, i.e., amino acid + HCl or NaOH, the Pasynski
method yields values of hydration numbers which are combina-
tions of the compressibilities of substances engaged in the
occurring reactions.
(30) Chalikian, T. V. J. Phys. Chem. B 2001, 105, 12566.
(31) Suzuki, M.; Shigematsu, J.; Fukunishi, Y.; Kodama, T. J. Phys.
Chem. B 1997, 101, 3839.
The results of our experiments on aqueous solutions of simple
amino acids and their salts are important for the general
knowledge about their hydration and could be useful in
understanding the behavior of biologically active macromol-
ecules in an aqueous environment.
(32) Lee, S.; Tikhomirova, A.; Shalvardjian, N.; Chalikian, T. V.
Biophys. Chem. 2008, 134, 185.
(33) Likhodi, O.; Chalikian, T. V. J. Am. Chem. Soc. 1999, 121, 1156.
(34) Likhodi, O.; Chalikian, T. V. J. Am. Chem. Soc. 2000, 122, 7860.
(35) Burakowski, A.; Glin´ski, J. J. Mol. Liq. 2008, 137, 25.
(36) Hedwig, G. R.; Hastie, J. D.; Hoiland, H. J. Solution Chem. 1996,
25, 615.
(37) Cheng, Y.-K.; Rossky, P. J. Nature 1998, 392, 696.
(38) Schmidt, A. B. Biophys. Chem. 1994, 51, 393.
(39) Liu, Q.; Brady, J. W. J. Phys. Chem. B 1997, 101, 1317.
(40) Inzelt, G.; Grof, P. Acta Chim. Acad. Sci. Hung. 1976, 88, 13.
(41) Sasahara, K.; Uedaira, H. Colloid Polym. Sci. 1994, 272, 385.
(42) Burakowski, A.; Glin´ski, J. Chem. Phys. Lett. 2009, 468, 184.
(43) Allam, D. S.; Lee, W. H. J. Chem. Soc. A 1966, 5.
(44) Allam, D. S.; Lee, W. H. J. Chem. Soc. A 1966, 426.
(45) Shigehara, K. Bull. Chem. Soc. Jpn. 1966, 39, 2643.
(46) Burakowski, A.; Glin´ski, J. Int. J. Thermophys. 2010, 31, 16.
(47) Kameda, Y.; Ebata, H.; Usuki, T.; Uemura, O.; Misawa, M. Bull.
Chem. Soc. Jpn. 1994, 67, 3159.
References and Notes
(1) Gekko, K.; Noguchi, H. J. Phys. Chem. 1979, 83, 2706.
(2) Sarvazyan, A. P. Annu. ReV. Biophys. Biophys. Chem. 1991, 20,
321.
(3) Pratt, L. R.; Pohorille, A. Chem. ReV. 2002, 102, 2671.
(4) Ide, M.; Maeda, Y.; Kitano, H. J. Phys. Chem. B 1997, 101, 7022.
(5) Berlin, E.; Pallansch, M. J. J. Phys. Chem. 1968, 72, 1887.
(6) Bernhardt, J.; Pauly, H. J. Phys. Chem. 1975, 79, 584.
(7) Millero, F. J.; Ward, G. K.; Chetirkin, P. J. Biol. Chem. 1976, 251,
4001.
(8) Millero, F. J.; Lo Surdo, A.; Shin, Ch. J. Phys. Chem. 1978, 82,
784.
JP105255B