1958
S. V. Kandula, P. Kumar / Tetrahedron Letters 44 (2003) 1957–1958
Acknowledgements
S.V.K. thanks CSIR, New Delhi for financial assis-
tance. We are grateful to Dr. M. K. Gurjar for his
support and encouragement. This is NCL communica-
tion No. 6638.
References
1. Casiraghi, G.; Zanardi, F.; Rassu, G.; Spanu, P. Chem.
Rev. 1995, 95, 1677–1716.
2. (a) Spaeth, E.; Adler, E. Monatsh. Chem. 1933, 63, 127–
140; (b) Ratovelonaanana, V.; Royer, J.; Husson, H. P.
Tetrahedron Lett. 1985, 26, 3803–3806; (c) Kano, S.;
Yokomatsu, T.; Yuasa, Y.; Shibuya, S. Heterocycles
1986, 24, 621–624; (d) Pilard, S.; Vaultier, M. Tetra-
hedron Lett. 1984, 25, 1555–1556.
3. (a) Comins, D. L.; Williams, A. L. Tetrahedron Lett.
2000, 41, 2839–2842; (b) Guerreiro, P.; Ratevelomanana-
Vidal, V.; Genet, J. P. Chirality 2000, 12, 408–410; (c)
Agami, C.; Couty, F.; Rabasso, N. Tetrahedron Lett.
2000, 41, 4113–4116; (d) Agami, C.; Couty, F.; Rabasso,
N. Tetrahedron 2001, 57, 5393–5401; (e) Masaki, Y.;
Imaeda, T.; Nagata, K.; Oda, H.; Ito, A. Tetrahedron
Lett. 1989, 30, 6395–6396; (f) Ratovelomanana, V.;
Royer, J.; Husson, H. P. Tetrahedron Lett. 1985, 26,
3803–3806.
Scheme 1. Reagents and conditions: (a) Ph3PꢀCHCOOMe,
benzene, reflux,
2 h, 85%; (b) (DHQ)2PHAL, OsO4,
CH3SO2NH2, K3Fe(CN)6, K2CO3, t-BuOH:H2O (1:1), 24 h,
0°C, 88%; (c) (i) SOCl2, Et3N, 15 min, (ii) RuCl3/NaIO4, 1 h,
88%; (d) NaN3, acetone, 1 h, 20% aq. H2SO4, ether, 10 h,
78%; (e) Boc2O, Pd/C, H2, EtOAc, 6 h, 98%; (f) (i) DIBAL-H,
−78°C, 1 h, (ii) n-BuLi, −BrPh3P+(CH2)3OH 9, −78°C, 40%;
(g) Pd/C, H2, MeOH, 4 h, 95%; (h) (i) MsCl, Et3N, −78°C, 1
h; (ii) CF3COOH, CH2Cl2, 74%.
a-position, to furnish the azido alcohol 7 in 78% yield.
The carbonyl group must be responsible for the
increased reactivity of the a-position.9 Reduction of the
azide under hydrogenation conditions in the presence
of Boc2O gave the Boc protected amino alcohol 8 which
on reduction with DIBAL-H to the corresponding alde-
hyde and subsequent Wittig reaction with phospho-
nium salt 910 afforded the olefin 10 in moderate yield.
The olefin reduction by hydrogenation using Pd/C gave
11 which was subjected to cyclization using methanesul-
fonyl chloride and triethylamine followed by deprotec-
tion of the Boc group to furnish (−)-a-conhydrine 1
having [h]2D0 −8.9 (c 1.0, ethanol) [lit.4 [h]2D0 −8.6, etha-
nol]. The physical and spectroscopic data of 1 are in
full agreement with the literature data.4 Similarly, the
synthesis of the other isomer (+)-a-conhydrine can be
achieved simply by changing the ligand in the SAD
step.
4. Enders, D.; Nolte, B.; Raabe, G.; Runsink, J. Tetra-
hedron: Asymmetry 2002, 13, 285–291.
5. (a) Pais, G. C. G.; Fernandes, R. A.; Kumar, P. Tetra-
hedron 1999, 55, 13445–13450; (b) Fernandes, R. A.;
Kumar, P. Tetrahedron: Asymmetry 1999, 10, 4349–4356;
(c) Fernandes, R. A.; Kumar, P. Tetrahedron: Asymmetry
1999, 10, 4797–4802; (d) Fernandes, R. A.; Kumar, P.
Eur. J. Org. Chem. 2000, 3447–3449; (e) Fernandes, R.
A.; Kumar, P. Tetrahedron Lett. 2000, 41, 10309–10312;
(f) Pandey, R. K.; Fernandes, R. A.; Kumar, P. Tetra-
hedron Lett. 2002, 43, 4425–4426.
6. (a) Becker, H.; Sharpless, K. B. Angew. Chem., Int. Ed.
Engl. 1996, 35, 448–481; (b) Torri, S.; Liu, P.; Bhu-
vaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem.
1996, 61, 3055–3060; (c) For a review on asymmetric
dihydroxylation, see: Kolb, H. C.; VanNiewenhze, M. S.;
Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.
7. Hayashi, Y.; Shoji, M.; Yamaguchi, J.; Sato, K.;
Yamaguchi, S.; Mukaiyama, T.; Sakai, K.; Asami, Y.;
Kakeya, H.; Osada, H. J. Am. Chem. Soc. 2002, 124,
12078–12079.
In conclusion, we have demonstrated that the enan-
tioselective synthesis of (−)-a-conhydrine can be accom-
plished by the Sharpless asymmetric dihydroxylation
and regiospecific nucleophilic opening of the corre-
sponding cyclic sulfate. To the best of our knowledge,
this is the first asymmetric synthesis of (−)-a-conhy-
drine using Sharpless asymmetric dihydroxylation as
the source of chirality. The synthetic strategy described
has significant potential for further extension to the
synthesis of b-conhydrine and its enantiomer by
employing the double inversion concept. Currently
studies are in progress in this direction.
8. For reviews on cyclic sulfites/sulfates, see: (a) Lohray, B.
B. Synthesis 1992, 1035–1052; (b) Byun, H.-S.; He, L.;
Bittman, R. Tetrahedron 2000, 56, 7051–7091
9. Lowry, T. H.; Richardson, K. S. Mechanism and Theory
in Organic Chemistry; 3rd ed.; New York: Harper &
Row, 1987; p. 321 and references cited therein.
10. Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, A. J. Am.
Chem. Soc. 1985, 107, 217–226.