9502
at 0°C in 40–50% yield. Using other coupling reagents such as DEAD/PPh3, 2,4,6-trichloroben-
zoyl chloride,15,16 and 2,2%-dipyridyl disulfide17,18 either led to a much lower yield or completely
failed. Unfortunately, subsequent deprotection of all the benzyl groups of macrolactone 2319
under catalytic hydrogenation conditions gave a white solid product insoluble in the solvent
system such as water, DMSO, methanol, methanol/CH2Cl2/H2O, acetic acid, THF or acetoni-
trile, although mass spectra indicated a complete removal of all benzyl groups; this is most likely
due to the amphiphilic nature of compound 2. No racemization during peptide coupling was
observed in the preparation of 1 and 2.
Glycopeptide 1 was assayed11 and its IC50 value in inhibiting P-selectin was determined to be
1 mM as compared to 118 mM for compound 3.10 Therefore, pre-organization of the necessary
point of contacts by introducing a macrolactone ring indeed greatly increased the potency of the
mimics, to an extent similar to the hydrophobic effect exhibited in 4. Although compound 2 is
insoluble, changing the structure of the hydrophobic group may increase its solubility.
Acknowledgements
This research was supported by the NSF.
References
1. Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C.-H. Chem. Rev. 1998, 98, 833.
2. Walz, G.; Aruffo, A.; Kolanus, W.; Bevilacqua, M.; Seed, B. Science 1990, 250, 1132.
3. Philips, M. L.; Nudelman, E.; Gaeta, F. C. A.; Perez, M.; Singhal, A. K.; Hakomori, S. I.; Paulson, J. C. Science
1990, 250, 1130.
4. Lowe, J. B.; Stoolman, L. M.; Nair, R. P.; Larsen, R. D.; Berhend, T. L.; Marks, R. M. Cell 1990, 63, 475.
5. Lasky, L. A. Annu. Rev. Biochem. 1995, 64, 113.
6. Bertozzi, C. R. Chem. Biol. 1995, 2, 703.
7. Stahl, W.; Sprengard, U.; Kretzschmar, G.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 2096.
8. Ramphal, J. Y.; Zheng, Z.-L.; Perez, C.; Walker, L. E.; DeFrees, S. A.; Gaeta, F. C. A. J. Med. Chem. 1994, 37,
3459.
9. Brandley, B. K.; Kiso, M.; Abbas, S.; Nikrad, P.; Srivasatava, O.; Foxall, C.; Oda, Y.; Hasegawa, A.
Glycobiology 1993, 3, 633.
10. Tsai, C.-Y.; Park, W. K. C.; Weitz-Schmidt, G.; Ernst, B.; Wong, C.-H. Bioorg. Med. Chem. Lett. 1998, 8, 2333.
11. Wong, C.-H.; Moris-Vara, F.; Hung, S. C.; Marron, T. G.; Lin, C. C.; Gong, K. W.; Weitz-Schmidt, G. J. Am.
Chem. Soc. 1997, 119, 8152.
12. Hung, S. C.; Lin, C. C.; Wong, C.-H. Tetrahedron Lett. 1997, 38, 5419.
1
13. 1: H NMR (600 MHz, D2O) l 4.55 (d, J=6.6 Hz, 1H), 4.51–4.54 (m, 2H), 4.43 (dd, J=1.8, 11.9 Hz, 1H), 4.30
(dd, J=4.9, 9.2 Hz, 1H), 4.11 (dd, J=3.5, 10.1 Hz, 1H), 3.99 (dd, J=9.7, 11.9 Hz, 1H), 3.91 (d, J=3.5 Hz, 1H),
3.90 (dd, J=6.6, 10.1 Hz, 1H), 3.81 (dd, J=5.7, 11.8 Hz, 1H), 3.75 (dd, J=4.4, 11.8 Hz, 1H), 3.66 (dd, J=1.8,
9.7 Hz, 1H), 2.87 (dd, J=4.4, 15.8 Hz, 1H), 2.81 (dd, J=4.9, 15.8 Hz, 1H), 2.30–2.35 (m, 2H), 2.06–2.11 (m, 1H),
1.83–1.88 (m, 1H); 13C NMR (150 MHz, D2O) l 177.86, 175.53, 172.53, 171.94, 171.48, 171.39, 75.66, 75.50,
70.79, 69.84, 67.96, 66.60, 61.48, 55.32, 52.96, 51.26, 36.38, 30.66, 26.70; HRMS calcd for C19H27N3NaO14 (FAB,
M+Na): 544.1391; found: 544.1382.
14. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.
15. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
16. Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Berinato, P.; Miller, R. A.; Tomaszewske,
M. J. Chem. Eur. J. 1996, 7, 847.