2248
K.F.Byth et al./ Bioorg.Med.Chem.Lett.14 (2004) 2245–2248
Table 4. Biological characterisation of compounds 3c and 3d
Compd
CDK2 IC50 (lM)
CDK4 IC50 (lM)
CDK1 IC50 (lM)
MCF-7 prolif. IC50 (lM)a
S249-T252 Phos. IC50 (lM)b
3c
3d
0.004
0.005
3.1
0.26
0.006
0.015
0.6
0.07
0.4
0.05
a IC50 for inhibition of BrdU incorporation to MCF-7 cells following 3 day exposure to test compound; average of at least two measurements.
b IC50 for inhibition of phosphorylation of S249-T252 site on Rb protein in MCF-7 cells following 2 h exposure to test compound.
Chen, H.; Chang, C.-H.; Seitz, S. P.; Trainor, G. L.
J.Med.Chem. 2002, 45, 5233–5248.
10. Honma, T.; Hayashi, K.; Aoyama, T.; Hashimoto, N.;
Machida, T.; Fukasawa, K.; Iwama, T.; Ikeura, C.;
pyrimidine (compounds 4a and 4b) are tolerated or
beneficial for activity while larger groups such as in 4c
are very much less active. This is consistent with this
substituent approaching Phe80 at the closed end of the
binding pocket.17 Substitution at the 5-position of the
imidazo[1,2-a]pyridine, compounds 4d–g, is less sensitive
to the introduction of larger groups, which is consistent
with this group being directed towards solvent at the
open end of the binding pocket.17
Suzuki-Takahashi, I. J.Med.Chem.
4627.
2001, 44, 4615–
11. Honma, T.; Yoshizumi, T.; Hashimoto, N.; Hayashi, K.;
Kawanishi, N.; Fukasawa, K.; Takaki, T.; Ikeura, C.;
Ikuta, M.; Suzuki-Takahashi, I.; Takashi, H.; Nishimura,
S.; Morishima, H. J.Med.Chem. 2001, 44, 4628–4640.
12. Kim, K. S.; Kimball, S. D.; Misra, R. N.; Rawlins, D. B.;
Hunt, J. T.; Xiao, H.-Y.; Lu, S.; Qian, L.; Han, W.-C.;
Shan, W.; Mitt, T.; Cai, Z.-W.; Poss, M. A.; Zhu, H.;
Sack, J. S.; Tokarski, J. S.; Chang, C. Y.; Pavletich, N.;
Kamath, A.; Humphreys, W. G.; Marathe, P.; Bursuker,
I.; Keller, K. A.; Roongta, U.; Batorsky, R.; Mulheron,
J. G.; Bol, D.; Fairchild, C. R.; Lee, F. Y.; Webster, K. R.
J.Med.Chem. 2002, 45, 3905–3927.
13. Furet, P.; Meyer, T.; Strauss, A.; Raccuglia, S.; Rondeau,
J.-M. Bioorg.Med.Chem.Lett. 2002, 12, 221–224.
14. Mesguiche, V.; Parsons, R. J.; Arris, C. E.; Bentley, J.;
Boyle, F. T.; Curtin, N. J.; Davies, T. G.; Endicott, J. A.;
Gibson, A. E.; Golding, B. T.; Griffin, R. J.; Jewsbury, P.;
Johnson, L. N.; Newell, D. R.; Noble, M. E. M.; Wang,
Finally, the biological profiles of compounds 3c and 3d
were more fully characterised (Table 4). These results
(Table 4) show that compounds 3c and 3d inhibit CDK1
with similar potency to CDK2 though show selectivity
with respect to CDK4. Both compounds block the cell
cycle at G1, S and G2/M-phases (data not shown), and
at concentrations that inhibit proliferation show inhi-
bition of CDK-dependent phosphorylation of the Rb
protein within 2 h of drug exposure. These observations
are consistent with these compounds acting as direct
CDK inhibitors in cells.
L.; Hardcastle, I. R. Bioorg.Med.Chem.Lett.
217–222.
15. Li, X.; Huang, P.; Cui, J. J.; Zhang, J.; Tang, C. Bioorg.
Med.Chem.Lett. 2003, 13, 1939–1942.
2003, 13,
In conclusion, imidazo[1,2-a]pyridines have been opti-
mised and characterised as potent inhibitors of CDK
enzymes and provide useful leads for the discovery of
orally active CDK inhibitors.
16. Engler, A. A.; Furness, K.; Mulhotra, S.; Sanchez-
Martinez, C.; Shih, C.; Xie, W.; Zhu, G.; Zhou, X.;
Conner, S.; Faul, M. M.; Sullivan, K. A.; Kolis, S. P.;
Brooks, H. B.; Patel, B.; Schultz, R. M.; DeHahn, T. B.;
Kirmani, K.; Spencer, C. D.; Watkins, S. A.; Considine,
E. L.; Dempsey, J. A.; Ogg, C. A.; Stamm, N. B.;
Anderson, B. D.; Campbell, R. M.; Vasudevan, V.; Lytle,
M. L. Bioorg.Med.Chem.Lett. 2003, 13, 2261–2267.
17. Anderson, M.; Beattie, J. F.; Breault, G. A.; Breed, J.;
Byth, K. F.; Culshaw, J. D.; Ellston, R. P. A.; Green, S.;
Minshull, C. A.; Norman, R. A.; Pauptit, R. A.; Stanway,
J.; Thomas, A. P.; Jewsbury, P. J. Bioorg.Med.Chem.
Lett. 2003, 13, 3021–3026.
References and notes
1. Sherr, C. J. Science 1996, 274, 1672–1677.
2. Harbour, J. W.; Luo, R. X.; Dei, S. A.; Postigo, A. A.;
Dean, D. C. Cell 1999, 98, 859–869.
3. Shapiro, G. I.; Harper, J. W. J.Clin.Invest. 1999, 104,
1645–1653.
4. Hu, B.; Mitra, J.; Van Den, H. S.; Enders, G. H. Mol.Cell
Biol. 2001, 21, 2755–2766.
5. Senderowicz, A. M.; Sausville, E. A. J.Natl.Cancer Inst.
2000, 92, 376–387.
6. Chen, Y.-N. P.; Sharma, S. K.; Ramsey, T. M.; Jiang, L.;
Martin, M. S.; Baker, K.; Adams, P. D.; Bair, K. W.;
Kaelin, W. G., Jr. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
4325–4329.
18. Almirante, L.; Mugnaini, A.; De Toma, N.; Gamba, A.;
Murmann, W. J.; Hidalgo, J. J.Med.Chem. 1970, 13,
1048–1051.
19. Breaux, E. J.; Zwikelmaier, K. E. J.Heterocycl.Chem.
1981, 18, 183–184.
20. Thomas, A. P.; Breault, G. A.; Beattie, J. F.; Jewsbury,
P. J. PCT Int.Application WO 2001-14375 .
21. Furte, P.; Meyer, T.; Mittl, P.; Fretz, H. J.Comput.Aided
Mol.Des. 2001, 15, 489–495.
22. Sadighi, J. P.; Harris, M. C.; Buchwald, S. L. Tetrahedron
Lett. 1998, 39, 5327–5330; Wolfe, J. P.; Buchwald, S. L.
J.Org.Chem. 2000, 65, 1144–1157.
23. Bee, J. A.; Rose, F. L. J.Chem.Soc.C 1966, 2031–2038.
24. Cross, P. E.; Dickinson, R. P.; Parry, M. P.; Randall,
M. J. J.Med.Chem. 1985, 28, 1427–1432.
7. Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, G.
L. J.Med.Chem. 2000, 43, 1–18.
8. Barvian, B.; Boschelli, D. H.; Cossrow, J.; Dobrusin, E.;
Fattaey, A.; Fritsch, A.; Fry, D.; Harvey, P.; Keller, P.;
Garrett, M.; La, F.; Leopold, W.; McNamara, D.; Quin,
M.; Trumpp-Kallmeyer, S.; Toogood, P.; Wu, Z.; Zhang,
E. J.Med.Chem. 2000, 43, 4606–4616.
9. Yue, E. W.; Higley, C. A.; DiMeo, S. V.; Carini, D. J.;
Nugiel, D. A.; Benware, C.; Benfield, P. A.; Burton, C. R.;
Cox, S.; Grafstrom, R. H.; Sharp, D. M.; Sisk, L. M.;
Boylan, J. F.; Mucklebauer, J. K.; Smallwood, A. M.;
25. Sakamoto, T.; Ohsawa, K. J.Chem.Soc,. Perkin Trans.1
1999, 2323–2326.