Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
9
via TS1 with anactivation energy barrier of 17.9 kcal/mol,
ACKNOWLEDGMENT
forming Rh(V) nitrenoid species C.14Protonation of C by
HOAc provides acyclic intermediate D with 9.3 kcal/mol
endothermicity and subsequent nitrenoid addition to the
second ortho carbon has a low barrier of 5.7 kcal/mol (TS2),
producing a dearomatized intermediate E. Finally, Proto-
nolysis of E with HOAc and subsequent aromatization gen-
erates 3a and regenerates the active catalyst Cp*Rh(OAc)2
with 35.8 kcal/mol exothermicity. In pathway b, intermediate
B undergoes a protonation first to give F with 11.6 kcal/mol
endothermicity and subsequent oxidative addition of Rh(III)
into the O−N bond has a high barrier of 32.5 kcal/mol (TS3),
which is clearly disfavored in comparison to pathway a.
“1000-Youth Talents Plan” and the CAS Pioneer Hundred
Talents Program is gratefully acknowledged.
REFERENCES
(1) For selected reviews: (a) Daugulis, O.; Do, H.-Q.; Shabashov, D.
Acc. Chem. Res.2009, 42, 1074. (b) Colby, D. A.; Bergman, R. G.;
Ellman, J. A. Chem. Rev. 2010, 110, 624. (c) Ackermann, L. Chem.
Rev.2011, 111, 1315. (d) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem.
Soc. Rev.2011, 40, 5068. (e) Yeung, C. S.; Dong, V. M. Chem. Rev.2011,
111, 1215. (f) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864; (g) Zhu, C.;
Wang, R.; Falck, J. R. Chem. - Asian J.2012, 7, 1502. (h) Yamaguchi, J.;
Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.2012, 51, 8960. (i)
Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed.2013, 52, 11726. (j)
Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (k) Daugulis,
O.; Roane, J.; Tran, L. D. Acc. Chem. Res.2015, 48, 1053. (l) Moselage,
M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498. (m) Gandeepan, P.;
Cheng, C.-H. Chem. Asian J.2016, 11, 448. (n) Gensch, T.; Hopkinson,
M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
(o) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117,
9163. (p) Park, Y.; Kim, Y.; Chang, S. Chem. Rev., 2017, 117, 9247.
(2) a) Lyons, T. W.; Sanford, M. S. Chem. Rev.2010, 110, 1147; b) Collet,
F.; Lescot, C.; Dauban, P. Chem. Soc. Rev.2011, 40, 1926; c) McMurray,
L.; OQHara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885; d)
Newhouse, T.; Baran, P. S. Angew. Chem. Int. Ed. 2011, 50, 3362; e)
Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.2012, 112,
5879; f) Engle, K. M.; T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem.
Res.2012, 45, 788; g) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 10236;
(3) For selected example: a) Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai,
N. J. Am. Chem. Soc.2010, 132, 12249; b) Chen, Q.; Ilies, L.; Nakamura,
E. J. Am. Chem. Soc.2011, 133, 428; c) Ano, Y.; Tobisu, M.; Chatani, N.
Synlett2012, 2763. d) Landge, V. G.; Jaiswal, G.; Balaraman, E. Org.
Lett., 2016, 18, 812;
(4) selected examples: a) Sarkar, D.; Melkonyan,F. S.; Gulevich,A. V.;
Gevorgyan, V. Angew. Chem. Int. Ed. 2013, 52, 10800; b) Rosen,B. R.;
Simke, L. R.; Thuy-Boun, P. S.; Dixon, D. D.; Yu, J.-Q.; Baran, P. S.
Angew. Chem. Int. Ed. 2013, 52, 7317; c) Kim, H. J.; Ajitha, M. J.; Lee,
Y.; Ryu, J.; Kim, J.; Lee, Y.; Jung, Y.; Chang, S. J. Am. Chem. Soc. 2014,
136, 1132; d) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am.
Chem. Soc. 2015, 137, 531. e) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. An-
gew. Chem. Int. Ed. 2010, 49, 6169; f) Umeda, N.; Hirano, K.; Satoh,
T.; Miura, M.; J. Org. Chem., 2009, 74, 7094.
(5) Selected examples of Catellani reactions: (a) Catellani, M.;
Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. 1997, 36, 119. (b)
Catellani, M. Top. Organomet. Chem. 2005, 14, 21. (c) Malacria, M.;
Maestri, G. J. Org. Chem. 2013, 78, 1323. (d) Ye, J.; Lautens, M. Nat.
Chem. 2015, 7, 863. (e) Della Ca, N.; Fontana, M.; Motti, E.; Catellani,
M. Acc. Chem. Res. 2016, 49, 1389.
(6) For reviews on Rh(III)-catalyzed C−H activations, see: (a) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (b)
Satoh, T.; Miura, M. Chem. Eur. J.2010, 16, 11212. (c) Song, G.; Wang,
F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (d) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res.2012, 45, 814. (e)
Patureau, F. W.; Wencel-Delord, J.; Glorius, F. AldrichimicaActa
2012, 45, 31. (f) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth.
Catal.2014, 356, 1443. (g) Song, G.; Li, X. Acc. Chem. Res.2015, 48,
1007. (h) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(7) For reviews of oxidizing directing groups, see: (a) Sun, H.; Huang,
Y. Synlett2015, 26, 2751. (b) Mo, J.; Wang, L.; Liu, Y.; Cui, X. Synthesis
2015, 47, 439. (c) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev.
2015, 44, 1155.
(8) Selected examples: (a) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew.
Chem., Int. Ed. 2013, 52, 6033. (b) Shen, Y.; Liu, G.; Zhou, Z.; Lu, X.
Org. Lett.2013, 15, 3366. (c) Zhang, H.; Wang, K.; Wang, B.; Yi, H.;
Hu, F.; Li, C.; Wang, J. Angew. Chem., Int. Ed.,2014, 53, 13234. (d) Yan,
H.; Wang, H.; Li, X.; Xin, X.; Wang, C.; Wan, B. Angew. Chem., Int.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 1.Energy profiles and geometry information for the C-
H alkylation and amidation reactions.
In summary, we have developed an unprecedented
Cp*Rh(III)-catalyzed unsymmetrical C-H alkylation and
amidation reaction of N-phenoxyacetamides with diazo
compounds under mild and redox-neutral conditions, giving
N2 as the sole by-product. Through experimental and compu-
tational studies, we elucidated that an initial Rh(III)-
catalyzed ortho C-H alkylation of N-phenoxyacetamides with
diazo compounds occurs first and the resulting Rh(III) in-
termediate subsequently undergo an intramolecular oxida-
tive addition into the O−N bond, forming a Rh(V) nitrenoid
species that is protonated by HOAc and subsequently further
directed toward electrophilic addition to the second ortho
position of the phenyl ring. The unprecedented one-step,
unsymmetrical C-H difunctionalization of phenol derivatives
shows potential applications in the late-stage diversification
of natural products. This work might provide a new direction
for unsymmetrical C-H difunctionalization reaction in an
efficient manner.
ASSOCIATED CONTENT
Supporting Information
Detailed experimental procedures, characterization data,
andDFT data. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡These authors contributed equally.
ACS Paragon Plus Environment