1140
J . Org. Chem. 1996, 61, 1140-1142
Ta ble 1. 2-Silylfu r a n s fr om Acylsila n e Dica r bon yl
Com p ou n d s
Efficien t Syn th esis of Su bstitu ted
2-Silylfu r a n s fr om Acylsila n e Dica r bon yl
Com p ou n d s
acysilane
silylfuran
R1
R2
R3
% isoltd yielda
1a
1b
1c
1d
1e
2a
2b
2c
2d
2e
H
H
H
H
H
Me
H
H
H
H
H
Me
Ph
H
75
87
65
57
81
Christopher S. Siedem† and Gary A. Molander*
Department of Chemistry and Biochemistry, University of
Colorado, Boulder, Colorado 80309-0215
Me
a
Refers to yields of purified product after Kugelrohr distillation.
All of the above compounds have been fully characterized spec-
troscopically (1H NMR, 13C NMR, IR), and elemental composition
has been established by combustion analysis and/or exact mass.
Received August 4, 1995
Furans1 have enjoyed an important niche in organic
synthesis as a result of their frequent occurrence in
natural products2 as well as their role as versatile
synthetic intermediates in a wide variety of organic
transformations.3 Because of their importance, there
exists a need for efficient methods of furan synthesis that
control the regiochemistry of substituents placed about
the ring.4 Traditional methods have relied upon the acid-
catalyzed dehydrative cyclization of 1,4-dicarbonyl com-
pounds5 or further elaboration of an existing furan
nucleus.6 Herein, we report a route to substituted
2-silylfurans 2 from acylsilane dicarbonyl compounds 1
that introduces synthetic flexibility to the more tradi-
tional dicarbonyl entry to furans (Scheme 1).
The synthesis of the requisite acylsilane dicarbonyl
compounds 1 was accomplished by the coupling of 2-silyl-
1,3-dithianes with halo acetals (Scheme 2). The details
of these syntheses have previously been disclosed.7
While we were investigating the chemistry of 1 in
Lewis acid-promoted [3 + 4] and [3 + 5] annulation
reactions with bis(trimethylsilyl) enol ethers,7,8 the in-
stability of these dicarbonyl substrates toward both Lewis
acids and protic acids became readily apparent. Annu-
lation of 1 with the bis(trimethylsilyl) enol ether of
methyl acetoacetate in the presence of catalytic trimeth-
ylsilyl triflate was sometimes contaminated by as much
as 20-40% of the furan (eq 1). In fact, some furan was
formed during the purification of 1 by flash chromatog-
raphy on silica gel or upon allowing 1 to stand for several
days at room temperature.
† Current address: Ariad Pharmaceuticals, Inc., 26 Landsdowne St.,
Cambridge, MA 02139-4234.
(1) For general reviews on the chemistry of furans: (a) Bosshard,
P.; Eugster, C. H. In Advances in Heterocyclic Chemistry; Katritzky,
A. R., Boulton, A. J ., Eds.; Academic Press: New York, 1966; Vol. 7,
pp 377-490. (b) Dean, F. M. In Advances in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic Press: New York, 1982; Vol. 30, pp
167-238. (c) Dean, F. M. In Advances in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic Press: New York, 1982; Vol. 31, pp
237-344. (d) Dean, F. M.; Sargent, M. V. In Comprehensive Heterocyclic
Chemistry; Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon Press:
New York, 1984; Vol. 4, Part 3, pp 531-598. (e) Dean, F. M. In
Comprehensive Heterocyclic Chemistry; Bird, C. W., Cheeseman, G. W.
H., Eds.; Pergamon Press: New York, 1984; Vol. 4, Part 3, pp 599-
656. (f) Donnelly, D. M. X.; Megan, M. J . In Comprehensive Heterocyclic
Chemistry; Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon Press:
New York, 1984; Vol. 4, Part 3, pp 657-712. (g) Sargent, M. V.; Cresp,
T. M. In Comprehensive Organic Chemistry; Barton, D. H. R., Ollis,
W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 4, pp 693-744.
(2) (a) J acobi, P. A. In Advanced Heterocyclic Natural Product
Synthesis; Pearson, W. H., Ed.; J AI Press: London, 1992; Vol. 2, p
251. (b) Glasby, J . S. Encyclopedia of the Terpenoids; Wiley: New York,
1982. (c) Fenical, W.; Okuda, R. K.; Bandurraga, M. M.; Clulver, P.;
J acobs, R. S. Science 1981, 212, 1512. (d) Bandurraga, M. M.; Fenical,
W.; Donovan, S. F.; Clardy, J . J . Am. Chem. Soc. 1982, 104, 6463. (e)
Wright, A. E.; Burres, N. S.; Schulte, G. K. Tetrahedron Lett. 1989,
30, 3491. (f) Paterson, I.; Gardner, M.; Banks, B. J . Tetrahedron 1989,
45, 5283.
(3) (a) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (b) Tanis, S. P.;
Herrinton, P. M. J . Org. Chem. 1985, 50, 3988. (c) Martin, S. F., Zinke,
P. W. J . Am. Chem. Soc. 1989, 111, 2311. (d) Martin, S. F., Guinn, D.
E. J . Org. Chem. 1987, 52, 5588. (e) Piancatelli, G. Heterocycles 1985,
23, 667. (f) Piancatelli, G. Heterocycles 1982, 19, 1735. (g) Antonioletti,
R.; Bonadies, F.; Prencipe, T.; Scettri, A. Gazz. Chem. Ital. 1988, 118,
629. (h) Kusakabe, M.; Sato, F. J . Org. Chem. 1989, 54, 3486.
(4) (a) Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. J . Am.
Chem. Soc. 1991, 113, 5816. (b) Srikrishna, A.; Sundarababu, G.
Tetrahedron 1990, 46, 7901. (c) Danheiser, R. L.; Stoner, E. J .; Koyama,
H.; Yamashita, D. S.; Klade, C. A. J . Am. Chem. Soc. 1989, 111, 4407.
(d) Padwa, A.; Murphree, S. S.; Yeske, P. E. J . Org. Chem. 1990, 55,
4241. (e) Marshall, J . A.; Wang, X.-J . J . Am. Chem. Soc. 1991, 113,
960. (f) McCombie, S. W.; Shankar, B. B.; Ganguly, A. K. Tetrahedron
Lett. 1987, 28, 4123. (g) Hiroi, K.; Sato, H. Synthesis 1987, 811. (h)
Davies, H. M. L.; Romines, K. R. Tetrahedron 1988, 44, 3343. (i)
Marshall, J . A.; Wang, X. J . Org. Chem. 1991, 56, 960. (j) Marshall, J .
A.; Bennett, C. E. J . Org. Chem. 1994, 59, 6110. (k) Marshall, J . A.;
Bartley, G. S. J . Org. Chem. 1994, 59, 7169.
The ready formation of silylfurans from 1 can be
attributed to the greater relative contribution of reso-
nance form 1B in the acylsilanes when compared to alkyl
ketones.9 Resonance form 1B is stabilized by the induc-
tive release of electron density from the silicon atom
toward the carbonyl group. This results in an increase
in nucleophilicity at the acylsilane carbonyl oxygen.10
Intramolecular attack of this oxygen on the alkyl ketone
with subsequent loss of water from the intermediate
accounts for the formation of the furan.
This reactivity pattern of acylsilanes is used to advan-
tage in the preparation of substituted 2-silylfurans 2 from
acylsilane dicarbonyl compounds 1 (Table 1).
In all cases, the 2-silylfurans 2 were readily obtained
in good to excellent yields under mild conditions. The
yields of furans 2c and 2d are lowered slightly because
of unfavorable steric interactions that develop upon ring
formation and elimination of water in the 2,3-disubsti-
tuted furans. For these more highly substituted systems
(7) Molander, G. A.; Siedem, C. S. J . Org. Chem. 1995, 60, 130.
(8) (a) Molander, G. A.; Cameron, K. O. J . Org. Chem. 1993 58, 5931.
(b) Molander, G. A.; Cameron, K. O. J . Am. Chem. Soc. 1993, 115, 830.
(c) Molander, G. A.; Cameron, K. O. J . Org. Chem. 1991 56, 2617. (d)
Molander, G. A.; Carey, J . C. J . Org. Chem. 1995, 60, 4559. (e)
Molander, G. A.; Eastwood, P. R., J . Org. Chem. 1995, 60, 4845. (f)
Molander, G. A.; Eastwood, P. R. J . Org. Chem., in press.
(5) (a) Perumal, P. T.; Balsundaram, B. Venugopal, M Synth.
Commun. 1993, 23, 2593. (b) Duhamel, L.; Chauvin, J . Chem. Lett.
1985, 693.
(6) (a) Goldfarb, J . L.; Volkenstein, J . B.; Belenkij, J . I. Angew.
Chem., Int. Ed. Engl. 1968, 7, 519. (b) Haarmann, H.; Eberbach, W.
Tetrahedron Lett. 1991, 32, 903. (c) Keay, B. A.; Bures, E. J .
Tetrahedron Lett. 1988, 29, 1247. (d) Katsumura, S.; Ichikawa, K.;
Mori, H. Chem. Lett. 1993, 1525. (e) Beese, G.; Keay, B. A. Synlett
1991, 33.
(9) For recent reviews of acylsilane chemistry: (a) Panek, J . S.;
Cirillo, P. F. Org. Prep. Proc. Int. 1992, 24, 555. (b) Bulman Page, P.
C.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147. (c) Ricci,
A.; Degl’Innocenti, A. Synthesis 1989, 647.
(10) (a) Tsai, Y.-M.; Nieh, H.-C.; Cherng, C.-D. J . Org. Chem. 1992,
57, 7010. (b) Yates, K.; Agolini, F. Can. J . Chem. 1966, 44, 2229.
0022-3263/96/1961-1140$12.00/0 © 1996 American Chemical Society