J. Am. Chem. Soc. 2001, 123, 751-752
751
Table 1. C-C Bond Activation of Ketimine 1 with 2 by 3 and
The C-C Bond Activation and Skeletal
Rearrangement of Cycloalkanone Imine by Rh(I)
Catalysts
Cy3P
ratio of 4:5
overall
entry
reactant 1 (n)
product(s)
(ter:int of 4)a
yield,b %
Chul-Ho Jun,* Hyuk Lee, and Sung-Gon Lim
1
2
3
4
5
6
7
1a (n ) 0)
1b (n ) 1)
1c (n ) 2)
1d (n ) 3)
1e (n ) 5)
1f (n ) 7)
1g (n ) 10)
5
5
0:100
0:100
23:77 (52:48)
39:61 (13:87)
38:62 (15:85)
39:61 (22:78)
37:63 (16:84)
9
5
76
89
83
86
79
Department of Chemistry, Yonsei UniVersity
4c + 5
4d + 5
4e + 5
4f + 5
4g + 5
Seoul 120-749, Korea
ReceiVed September 12, 2000
The activation of the carbon-carbon bond by homogeneous
catalysts is of current interest in organometallic chemistry.1
However, a few examples of the homogeneous catalytic activation
of the C-C bond by transition metal have been reported:2-9 the
decarbonylative cleavage of the C-C bond,3 the â-alkyl elimina-
tion of the homoallyl alcohol,4 the â-decarboxylative ring opening
of cyclic carbonate,5 the ring cleavage of tert-cyclobutanol,6 and
so on. Especially, ring-cleavages of cycloalkanones by transition
metal catalyst have been limited to strained cyclic ketones such
as cyclopropenone,7 cyclobutenone,8 and cyclobutanones9 to take
advantage of the release of the ring strain. On the other hand,
catalytic C-C bond cleavages of large unstrained ring-sized
cycloalkanones are rare. We recently reported on the new catalytic
C-C bond activation of unstrained ketone compounds.10 In this
report, we wish to describe the ring-opening of an unstrained
cycloalkanone imine and its skeletal rearrangement.
a The ratio of terminal olefin and internal olefin of 4 was determined
by GCD. b Yields are determined by GCD.
Alkenyl ketone 4, consisting of terminal and internal olefins,13
can be hydrogenated by 1 atm of H2 on Pd/C to give saturated
alkyl ketone 6. Initially, the C-C bond in ketimine 1 is cleaved
by rhodium(I) in 3 to give an (iminoacyl) rhodium(III) metalla-
cyclic complex 7, followed by â-hydrogen elimination to effect
rhodium(III) hydride 8 (Scheme 1). In the presence of 2, the olefin
Scheme 1
The reaction of cycloalkanoketimine 1, prepared from cycloal-
kanone and 2-amino-3-picoline,11 with 1-hexene (2, 1000 mol %
based on 1) was carried out in the presence of [(C8H14)2RhCl]2
(3, 3 mol % based on 1) and Cy3P (6 mol %) to yield a mixture
of the ring-opened alkenyl ketones 4 and 7-tridecanone (5) after
hydrolysis (eq 1).12
exchange of the ω-alkenyl group of 8 with 2 affords 9. A hydride
insertion in 9 and a reductive elimination of the resulting complex
10 produces 11. Ketimines 11 undergo a further C-C bond
activation to yield the symmetric dialkyl ketimine 12.14 The
hydrolysis of 11 and 12 affords the corresponding ketones 4 and
5.
As the size of the ring from cyclohexanoketimine to cyclo-
heptanoketimine increases, the yields of the C-C bond cleaved
products dramatically increase (Table 1). In case of cyclopen-
tanoketimine 1a and cyclohexanoketimine 1b, small amounts (5-
9% yields) of the C-C bond cleaved products were determined
(Table 1, entries 1-2), while moderate yields (76-89%) of the
C-C bond cleaved products were obtained in the reaction of
cycloalkanoketimine larger than 1b (entries 3-7). The reason
(1) For reviews, see: (a) Rybtchinski, B.; Milstein, D. Angew. Chem., Int.
Ed. 1999, 38, 870. (b) Jennings, P. W.; Johnson, L. L. Chem. ReV. 1994, 94,
2241. (c) Crabtree, R. H. Chem. ReV. 1985, 85, 245. (d) Murakami, M.; Ito,
Y. In ActiVation of UnreactiVe Bonds and Organic Synthesis; Murai, S. Ed.;
Springer: Berlin, 1999; pp 97-129.
(2) (a) Mitsudo, T.-a.; Suzuki, T.; Zhang, S.-W.; Imai, D.; Fujita, K.-i.;
Manabe, T.; Shiotsuki, M.; Watanabe, Y.; Wada, K.; Kondo, T. J. Am. Chem.
Soc. 1999, 121, 1839. (b) Liou, S.-Y.; van der Boom, M. E.; Milstein, D.
Chem. Commun. 1998, 687. (c) Edelbach, B. L.; Lachicotte, R. J.; Jones, W.
D. J. Am. Chem. Soc. 1998, 120, 2843. (d) Lin, M.; Hogan, T.; Sen, A. J.
Am. Chem. Soc. 1997, 119, 6048. (e) Perthuisot, C.; Jones, W. D. J. Am.
Chem. Soc. 1994, 116, 3647. (f) Bunel, E.; Burger, B. J.; Bercaw, J. E. J.
Am. Chem. Soc. 1988, 110, 976. (g) Watson, P. L.; Roe, D. C. J. Am. Chem.
Soc. 1982, 104, 6471. (h) Golden, H. J.; Baker, D. J.; Miller, R. G. J. Am.
Chem. Soc. 1974, 96, 4235.
(3) Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1999,
121, 8645.
(4) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.;
Watanabe, Y.; Mitsudo, T. J. Am. Chem. Soc. 1998, 120, 5587.
(5) Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka, S.; Tamaru, Y. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2352.
(6) (a) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 11010.
(b) Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645.
(7) Baba, A.; Ohshiro, Y.; Agawa, T. J. Organomet. Chem. 1976, 110,
121.
(8) (a) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115,
4895. (b) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1991, 113,
2771.
(9) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (b)
Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118,
8285. (c) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc.
1997, 119, 9307. (d) Murakami, M.; Itahashi, T.; Amii, H.; Takahashi, K.;
Ito, Y. J. Am. Chem. Soc. 1998, 120, 9949. (e) Murakami, M.; Tsuruta, T.;
Ito, Y. Angew. Chem., Int. Ed. 2000, 39, 2484.
(10) Jun, C.-H.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880.
(11) Cycloalkanoketimine was prepared by the reaction of cycloalkanone
and N-lithium-2-amino-3-picoline, generated from 2-amino-3-picoline and
n-BuLi in THF. See Supporting Information.
(12) In the C-C bond cleavage of ketimine, the catalyst 3 and Cy3P shows
the best catalytic activity among organotransition metal catalysts. Various
olefins could be applied to this C-C bond activation reaction, and 1-hexene
(2) was selected as a standard olefin.
(13) When the reaction of 1c and 2 was carried out at 150 °C for 1 h
under (PPh3)3RhCl (3 mol %), 4c bearing an exclusive terminal alkenyl group
was obtained in a 13% yield along with 5 (5%). This result implies that the
initial terminal olefin in ketimine is isomerized to internal olefin.
(14) Jun, C.-H.; Lee, H.; Park. J.-B.; Lee, D.-Y. Org. Lett. 1999, 1, 2161.
10.1021/ja0033537 CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/03/2001