yaminoalcohols 4 has been described previously;7,12 the present
extension to the synthesis of monohydroxyethylene isosteres
further demonstrates the synthetic utility of these inter-
mediates.
This work was supported by Istituto Superiore di Sanità,
National Research Program on AIDS and the University of
Trieste.
Notes and references
2 (a) D. J. Kempf, H. L. Sham, K. C. Marsh, C. A. Flentge, D. Betebenner,
B. E. Green, E. McDonald, S. Vasavanonda, A. Saldivar, N. E.
Wideburg, W. M. Kati, L. Ruiz, C. Zhao, L. Fino, J. Patterson, A. Molla,
J. J. Plattner and D. W. Norbeck, J. Med. Chem., 1998, 41, 602;
(b) D. W. Cameron, M. Heah-Chiozzi, S. Danner, C. Cohen, S. Kravcik,
C. Maurath, E. Sun, D. Henry, R. Rode, A. Potthoff and J. Leonard,
Lancet, 1998, 351, 543; (c) A. P. Lea and D. Faulds, Drugs, 1996, 52,
541; (d) D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S.
Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X.-P.
Kong, N. E. Wideburg, A. Saldivar, L. Ruiz, W. M. Kati, H. L. Sham,
T. Robins, K. D. Stewart, A. Hsu, J. J. Plattner, J. M. Leonard and D. W.
Norbeck, Proc. Natl. Acad. Sci. USA, 1995, 92, 2484.
3 D. J. Kempf, K. C. Marsh, L. Codacovi Fino, P. Bryant, A. Craig-
Kennard, H. L. Sham, C. Zhao, S. Vasavanonda, W. E. Kohlbrenner,
N. E. Wideburg, A. Saldivar, B. E. Green, T. Herrin and D. W. Norbeck,
Bioorg. Med. Chem., 1994, 2, 847.
4 D. J. Kempf, T. J. Sowin, E. M. Doherty, S. M. Hannick, L. M.
Codavoci, R. F. Henry, B. E. Green, S. G. Spanton and D. W. Norbeck,
J. Org. Chem., 1992, 57, 5692.
Scheme 2 Reagents and conditions: (a) NaH, THF, 25 °C, 85%; (b) MsCl,
Et3N, CH2Cl2, 0 °C; (c) NaN3, DMSO, 18-crown-6, 50 °C, 75%, 2 steps; (d)
NaH, Boc2O, THF; (e) Cs2CO3, MeOH–H2O, 58%, 2 steps; (f) 1 atm H2,
10% Pd/C, MeOH, 100%.
protons (11%) is consistent with the cis stereochemistry of the
ring substituents. With the first hydroxy group thus protected,
the second OH can be activated as mesylate, in CH2Cl2 at
0 °C,11 and the resulting oxazolidinone 11 is then converted into
the selectively protected (S,R,S) isostere 13 {[a]2D5 = +1.0 (c 2,
MeOH)} by the same sequence of reactions seen before for the
synthesis of 9 (Scheme 2). The overall yield of 13 is 22%, from
the epoxyalcohol 4.
We have thus described a novel approach to the synthesis of
the (S,S,S) dipeptide isostere of Ritonavir 9 and its (S,R,S)
epimer 13, based on the regioselective ring opening of an
epoxyalcohol with aluminium hydride. This strategy leads to a
mono-protected diaminoalcohol from which peptidomimetic
protease inhibitors can be directly obtained by coupling with
different peptide, or non-peptide, residues. The approach is not
limited to isosteres with identical side chains, and it should thus
be possible to extend this methodology to the synthesis of a
repertoire of isosteres with different residues, starting from the
corresponding, readily available epoxyalcohols.7 The synthesis
of dihydroxyethylene dipeptide isosteres from the same epox-
5 T. L. Stuk, A. R. Haight, D. Scarpetti, M. S. Allen, J. A. Menzia, T. A.
Robbins, S. I. Parekh, D. C. Langridge, J. J. Tien, R. J. Pariza and F. A. J.
Kerdesky, J. Org. Chem., 1994, 59, 4040.
6 A. K. Ghosh, D. Shin and P. Mathivanan, Chem. Commun., 1999,
1025.
7 F. Benedetti, S. Miertus, S. Norbedo, A. Tossi and P. Zlatoidsky, J. Org.
Chem., 1997, 62, 9348.
8 J. M. Finan and Y. Kishy, Tetrahedron Lett., 1982, 23, 2719.
9 T. Ishizuka and T. Kunieda, Tetrahedron Lett., 1987, 28, 4185.
10 D. J. Ager, I. Prakash and D. R. Schaad, Chem. Rev., 1996, 96, 835.
11 R. K. Crossland and K. L. Servis, J. Org. Chem., 1970, 35, 3195.
12 A. Tossi, N. Antcheva, F. Benedetti, S. Norbedo, S. Miertus and D.
Romeo, Pept. Prot. Lett., 1999, 6, 145; F. Benedetti, M. Magnan, S.
Miertus, S. Norbedo, D. Parat and A. Tossi, Bioorg. Med. Chem. Lett.,
1999, 9, 3027.
204
Chem. Commun., 2001, 203–204