D. Lengeler, K. Weisz / Tetrahedron Letters 42 (2001) 1479–1481
1481
2. (a) Griffin, L. C.; Kiessling, L. L.; Beal, P. A.; Gillespie,
P.; Dervan, P. B. J. Am. Chem. Soc. 1992, 114, 7976–
7982; (b) Huang, C.-Y.; Cushman, C. D.; Miller, P. S. J.
Org. Chem. 1993, 58, 5048–5049; (c) Sasaki, S.;
Nakashima, S.; Nagatsugi, F.; Tanaka, Y.; Hisatome,
M.; Maeda, M. Tetrahedron Lett. 1995, 36, 9521–9524;
(d) Zimmerman, S. C.; Schmitt, P. J. Am. Chem. Soc.
1995, 117, 10769–10770; (e) Huang, C.-Y.; Bi, G.; Miller,
P. S. Nucleic Acids Res. 1996, 24, 2606–2613; (f) Leh-
mann, T. E.; Greenberg, W. A.; Liberles, D. A.; Wada,
C. K.; Dervan, P. B. Helv. Chim. Acta 1997, 80, 2002–
2022; (g) Lecubin, F.; Benhida, R.; Fourrey, J.-L.; Sun,
J.-S. Tetrahedron Lett. 1999, 40, 8085–8088.
Figure 3. 1H chemical shift l for the cytosine amino proton
Hb in a mixture of [4-15N]-3%,5%-di-O-(triisopropylsilyl)-2%-de-
oxycytidine, 3%,5%-di-O-(triisopropylsilyl)-2%-deoxyguanosine
and 1–4 (1:1:10) in CD2Cl2 at 240 K; cCG=5.45 mM.
3. Koshlap, K. M.; Gillespie, P.; Dervan, P. B.; Feigon, J. J.
Am. Chem. Soc. 1993, 115, 7908–7909.
4. Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.;
Sterling, J. Carbohydr. Res. 1987, 162, 145–152.
group, pointing to a slightly stronger hydrogen bond
for 3 with a non-alkylated urea substituent. Compared
to 3 and 4, Hb resonances in complexes of 1 and 2 with
only two potential hydrogen bonds are less downfield
shifted. Excluding any cooperative effects, loss of an
additional hydrogen bond contact is always expected to
improve the geometry and strength of residual contacts
unless there is a perfect steric fit. Thus, the available
chemical shift data can only be rationalized by lower
association constants with only partial CG complexa-
tion by 1 and 2 even at lower temperatures. Compared
to 2, 1 shows stronger binding towards the cytosine
amino group. This might be due to steric hindrance of
the bulky benzoyl group. In addition, a stronger hydro-
gen bond involving the more acidic amide proton of 2
might compromise the strength of the NHbꢀO hydro-
gen bond by geometric readjustments.
5. Landesberg, J. M.; Katz, L.; Olsen, C. J. Org. Chem.
1972, 37, 930–936.
6. Analytical and spectral data for the nucleoside analogs.
Compound 1: 1H NMR (250 MHz, CD2Cl2): l (ppm)
4.54–4.75 (m, 3H; H4%, H5%, H5¦), 6.06 (d, 1H; H1%), 6.19
(app. t, 1H; H3%), 6.33 (dd, 1H; H2%), 7.36–8.09 (m, 18H;
ArH). Anal. calcd for C34H26N2O9: C, 67.32; H, 4.32; N,
1
4.62; found: C, 66.57; H, 4.21; N, 4.38. Compound 2: H
NMR (250 MHz, CDCl3): l (ppm) 4.56–4.81 (m, 3H;
H4%, H5%, H5¦), 6.09 (d, 1H; H1%), 6.17 (app. t, 1H; H3%),
6.28 (dd, 1H; H2%), 7.29–8.25 (m, 23H; ArH), 8.62 (s, 1H;
NH). Anal. calcd for C41H30N2O10: C, 69.29; H, 4.25; N,
1
3.94; found: C, 68.35; H, 4.43; N, 3.72. Compound 3: H
NMR (250 MHz, CD2Cl2): l (ppm) 4.56–4.82 (m, 3H;
H4%, H5%, H5¦), 5.48 (s, br, 2H; NH2), 6.12 (d, 1H; H1%),
6.19 (app. t, 1H; H3%), 6.29 (dd, 1H; H2%), 7.27–8.03 (m,
18H; ArH), 8.21 (s, 1H; NH). Anal. calcd for
C35H27N3O10: C, 64.71; H, 4.19; N, 6.47; found: C, 63.97;
H, 4.32; N, 6.36. Compound 4: 1H NMR (250 MHz,
CDCl3): l (ppm) 0.87 (t, 3H; CH3), 1.22–1.50 (m, 4H;
CH2CH2), 3.22 (t, 2H; N-CH2), 4.54–4.79 (m, 3H; H4%,
H5%, H5¦), 6.08 (d, 1H; H1%), 6.19 (app. t, 1H; H3%), 6.29
(dd, 1H; H2%), 7.22–8.09 (m, 18H; ArH). Anal. calcd for
C39H35N3O10: C, 66.38; H, 5.00; N, 5.95; found: C, 66.31;
H, 5.03; N, 5.56.
In summary, we have synthesized four differently sub-
stituted phthalimide-derived nucleoside analogs that
can bind a CG base pair via specific hydrogen bonds.
By employing selectively 15N amino labeled cytosine as
a local probe, NMR experiments may not only provide
rapid information on their affinity towards a CG base
pair but also on the strength of individual hydrogen
bonds, thus complementing future studies on the ther-
modynamics of binding. It is expected that such system-
atic investigations will yield more insight into the
binding of a CG base pair with novel nucleobases and
constitute a first step in understanding the complex
interplay of the different interactions effective in a triple
helical oligonucleotide.
7. (a) Golubev, N. S.; Shenderovich, I. G.; Smirnov, S. N.;
Denisov, G. S.; Limbach, H.-H. Chem. Eur. J. 1999, 5,
492–497; (b) Dingley, A. J.; Masse, J. E.; Peterson, R.
D.; Barfield, M.; Feigon, J.; Grzesiek, S. J. Am. Chem.
Soc. 1999, 121, 6019–6027; (c) Dunger, A.; Limbach,
H.-H.; Weisz, K. J. Am. Chem. Soc. 2000, 122, 10109–
10114.
8. For the preparation of 4-15N labeled 2%-deoxycytidine,
see: Kupferschmitt, G.; Schmidt, J.; Schmidt, T.; Fera,
B.; Buck, F.; Ru¨terjans, H. Nucleic Acids Res. 1987, 15,
8225–6241.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft for
financial support.
9. Note that care was taken to ensure that nucleoside con-
centration and molar ratios were equal for all samples.
10. Mertz, E.; Mattei, S.; Zimmerman, S. C. Org. Lett. 2000,
2, 2931–2934.
11. Self-association of the phthalimide nucleoside 4 in meth-
ylene chloride was found to be much smaller than the
expected binding to a CG base pair (Kass,self=13 M−1 at
room temperature).
References
1. Thuong, N. T.; He´le`ne, C. Angew. Chem., Int. Ed. Engl.
1993, 32, 666–690.
.