ORGANIC
LETTERS
2001
Vol. 3, No. 5
739-741
Enantioselective Synthesis of
Epigallocatechin-3-gallate (EGCG), the
Active Polyphenol Component from
Green Tea
Lianhai Li and Tak Hang Chan*
Department of Chemistry, McGill UniVersity, Montreal, Quebec H3A 2K6, Canada
Received December 27, 2000
ABSTRACT
Enantioselective synthesis of epigallocatechin-3-gallate (EGCG, 3b), the active polyphenol component from green tea, has been achieved by
using a stereospecific cyclization of the Sharpless asymmetric dihydroxylation product 7c as the key step.
Second to water, tea is probably the most widely consumed
beverage worldwide. Regular consumption of tea has been
associated with reduced risk of several forms of cancer and
other health benefits according to some epidemiological
studies.1 Tea leaves contain many constituents,2 and the
biological effects of tea are often attributed to the polyphenols
among the tea constituents.3 In freshly harvested tea leaves,
the following flavanols, known collectively as the catechins,
are present: (+)-catechin (1a), (+)-gallocatechin (1b), (-)-
epicatechin (2a), (-)-epigallocatechin (2b), (-)-epicatechin-
3-gallate (3a), and (-)-epigallocatechin-3-gallate (3b, EGCG).
In particular, (-)-epigallocatechin-3-gallate (3b, EGCG), the
main ingredient of green tea extract, has been shown to
inhibit growth in a number of tumor cell lines such as human
leukemia cell lines, mouse NFS60 cell line,4 MCF-7 breast
carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma,
UACC-375 melanoma,5 the prostate cancer cell lines LNCaP,
PC-3 and DU145,6 leukemia blast cells from AML patients,7
and human epidermoid carcinoma cell line A431.8 In 1996,
the Division of Cancer Prevention and Control, National
Cancer Institute of the United States, published a clinical
development plan with respect to tea.9 At the present time,
EGCG (3b) can be obtained by isolation from green tea
extract, and the yield depends on the processing and the
source of the tea. As far as we are aware, no synthesis of
(4) Otsuka, T.; Ogo, T.; Eto, T.; Asano, Y.; Suganuma, M.; Niho, Y.
Life Sci. 1998, 63, 1397.
(5) Valcic, S.; Timmermann, B. N.; Alberts, D. S.; Watcher, G. A.;
Krutzsch, M.; Wymer, J.; Guillen, J. M. Anticancer Drugs 1996, 7, 461.
(6) Paschka, A. G.; Butler, R.; Young, C. Y. Cancer Lett. 1998, 130, 1.
(7) Asano, T.; Okamura, S.; Ogo, T.; Eto, T.; Otsukat, T.; Niho, Y. Life
Sci. 1997, 60, 135.
(1) For selected recent reviews, see: (a) Bushman, J. L. Nutr. Cancer
1998, 31, 151. (b) Weisburger, J. H. Proc. Soc. Exp. Biol. Med. 1999, 220,
271. (c) Hollman, P. C.; Feskens, E. J.; Katan, M. B. Proc. Soc. Exp. Biol.
Med. 1999, 220, 198. (d) Stensvold, I.; Tverdal, A.; Solvoll, K.; Per Foss
O. PreV. Med. 1992, 21, 546.
(2) Haslam, E. Plant Polyphenols. Vegetable Tannins ReVisited. Cam-
bridge University Press: Cambridge, 1989.
(3) The effect of the nonpolyphenolic fraction of green tea leaves has
recently been studied: Higashi-Okai, K.; Otani, S.; Okai, Y. Cancer Lett.
1998, 129, 223.
(8) Liang, Y. C.; Lin-Shiau, S. Y.; Chen, C. F.; Lin, J. K. J. Cell.
Biochem. 1997, 67, 55.
(9) Kelloff, G. J.; Crowell, J. A.; Hawk, E. T.; Steele, V. E.; Lubet, R.
A.; Boone, C. W.; Covey, J. M.; Doody, L. A.; Omenn, G. S.; Greenwald,
P.; Hong, W. K.; Parkinson, D. R.; Bagheri, D.; Baxter, G. T.; Blunden,
M.; Doeltx, M. K.; Eisenhauer, K. M.; Johnson, K.; Knapp, G. G.;
Longfellow, D. G.; Malone, W. F.; Nayfield, S. G.; Seifried, H. E.; Swall,
L. M.; Sigman, C. C. J. Cell. Biochem. Suppl. 1996, 26, 54.
10.1021/ol000394z CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/13/2001