pubs.acs.org/joc
malononitrile (FM) derivatives had been integrated as
Synthesis and Photophysics of Ambipolar
Fluoren-9-ylidene Malononitrile Derivatives†
photosensitizers for carbazole-containing conductive poly-
mers.3,4 While looking for improvements in the electron
affinity of electron-deficient fluorene derivatives, a series of
nitro-containing FOs and FMs were mainly developed by
Perepichka’s and Bryce’s research groups.5 These efforts
recently led to amazingly low band gap materials if cova-
lently attached to electron-rich tetrathiafulvalene (TTF).6
Leandro A. Estrada and Douglas C. Neckers*
Center for Photochemical Sciences at Bowling Green State
University, Bowling Green, Ohio 43403
Received August 28, 2009
The efficient synthesis of ambipolar 2,7- and 3,6-disub-
stituted fluoren-9-ylidene malononitrile derivatives (4
and 9) is described. Structure-activity relationships de-
pend on the position of substitution. Population of the S1
excited state in the 2,7-disubstituted FM derivatives is
achieved via higher states, as evidenced from the UV-vis
absorption and emission spectra. The results are sup-
ported by TDDFT calculations. Charge transfer states
were the main deactivation path of the excited states of
ambipolar 9b in polar solvents, as evidenced by fluores-
cence spectroscopy.
FIGURE 1. Design and purpose of target compounds.
Substitution at positions 3, 6, and 9 offer, in theory, good
electronic communication through the fluorene skeleton,
making it suitable for antenna-type systems were proper
electron donor and acceptor groups incorporated
(Figure 1). The rigid fluorene carbon frame should aid in
electron and energy transfer processes in a similar fashion as
well-studied compounds for this purpose.7,8 Though transi-
tion-metal-catalyzed C-C coupling9 reaction processes have
enabled the incorporation of a plethora of substituents in
(3) Hoegl, H.; Barchietto, G.; Tar, D. Photochem. Photobiol. 1972, 16,
335.
(4) Perepichka, I. F.; Mysyk, D. D.; Sokolov, N. I. In Current Trends in
Polymer Photochemistry; Allen, N. S., Edge, M., Bellobono, I. R., Selli, E.,
Eds.; Ellis Harwood: New York, London, 1995.
Current efforts leading to new multiphoton-absorbing
materials are reflected by the number of organic ambipolar
compounds recently reported.1 Fluorene has become a fa-
vorite synthon in this.2 2,7-Derivatives mainly focus on the
delocalizing π-electron density via byphenylene, whereas
derivatives at C-9 usually improve solubility, processability,
and interchain charge and energy transfer in polymer com-
posites. Incorporating electron-withdrawing groups at C-9
stabilizes the LUMO of fluorene, making it remarkably
electrophilic. Thus, fluorenone (FO) and fluoren-9-ylidene
(5) Perepichka’s work in “Electron Acceptors of the Fluorene Series”
involves a total of 13 parts published in different scientific journals. Among
the ones involving FMs, see: (a) Part 5. Perepichka, I. F.; Popov, A. F.;
Orekhova, T. V.; Bryce, M. R.; Vdovichenko, A. N.; Batsanov, A. S.; Goldenberg,
L. M.; Howard, J. A. K.; Sokolov, N. I.; Megson, J. L. J. Chem. Soc., Perkin
Trans. 2 1996, 2453. (b) Part 6. Mysyk, D. D.; Perepichka, I. F.; Sokolov, N. I.
J. Chem. Soc., Perin Trans. 2 1997, 537. (c) Part 7. Perepichka, I. F.; Kuz'mina,
L. G.; Perepichka, D. F.; Bryce, M. R.; Goldenberg, L. M.; Popov, A. F.; Howard,
J. A. K. J. Org. Chem. 1998, 63, 6484. (d) Part 10. Perepichka, I. F.; Popov, A. F.;
Orekhova, T. V.; Bryce, M. R.; Andrievskii, A. M.; Batsanov, A. S.; Howard, J. A.
K.; Sokolov, N. I. J. Org. Chem. 2000, 65, 3053.
(6) (a) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104,
4891. (b) Perepichka, D. F.; Bryce, M. R. Angew. Chem., Int. Ed. 2005, 44, 5370
and references therein.
(7) (a) Hasharoni, K.; Lebanon, H.; Greenfield, S. R.; Gosztola, D. J.;
Svec, W. A.; Wasielewski, M. R. J. Am. Chem. Soc. 1995, 117, 8055.
(b) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R.
J. Am. Chem. Soc. 1996, 118, 6767. (c) Sinks, L. E.; Wasielewski, M. R.
J. Phys. Chem. A 2003, 107, 611. (d) Weiss, E. A.; Ratner, M. A.;
Wasielewski, M. R. J. Phys. Chem. A 2003, 107, 3639.
† Contribution No. 751 from the Center for Photochemical Sciences.
(1) (a) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953. (b) Kulkarni,
A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
(c) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.;
ꢀ
Bredas, J. L. Chem. Rev. 2007, 107, 926. (d) Zaumseil, J.; Sirringhaus, H. Chem.
Rev. 2007, 107, 1296. (e) He, G. H.; Tan, L.-T.; Zheng, Q.; Prasad, P. N. Chem.
Rev. 2008, 108, 1245.
(2) For recent representative references on multiphoton absorbing mate-
(8) (a) Weiss, E. A.; Ahrens, M. J.; Sinks, L. E.; Gusev, A. V.; Ratner,
M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 5577. (b) Weiss,
E. A.; Tauber, M. J.; Kelley, R. F.; Ahrens, M. J.; Ratner, M. A.;
Wasielewski, M. R. J. Am. Chem. Soc. 2005, 127, 11842.
ꢀ
rials based on fluorene, see: (a) Belfield, K. D.; Bondar, M. V.; Hernandez,
F. E.; Masunov, A. E.; Mikhailov, I. A.; Morales, A. R.; Przhonska, O. V.;
Yao, S. J. Phys. Chem. C 2009, 113, 4706. (b) Sun, M.; Ding, Y.; Zhao, L.;
Ma, F. Chem. Phys. 2009, 359, 166. (c) Zheng, Q.; Gupta, S. K.; He, G. S.;
Tan, L.-S.; Prasad, P. N. Adv. Funct. Mater. 2008, 18, 2770. (d) Belfield,
ꢀ
K. D.; Bondar, M. V.; Hernandez, F. E.; Przhonska, O. V.; Yai, S. J. Phys.
Chem. B 2007, 111, 12723.
ꢀ
(9) For interesting reviews in the subject, see: (a) Chinchilla, R.; Najera,
C. Chem. Rev. 2007, 107, 294. (b) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106,
4644. (d) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
8484 J. Org. Chem. 2009, 74, 8484–8487
Published on Web 10/08/2009
DOI: 10.1021/jo901869g
r
2009 American Chemical Society