J. A. A. W. Elemans, A. E. Rowan et al.
FULL PAPER
[2] B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104,
3947.
NH), 7.40–7.20 (m, 1 H, PyH-3), 2.22 (s, 3 H, CH3) ppm;
13C{1H}NMR (CDCl3, 75 MHz): δ = 169.25, 144.83, 140.93,
135.25, 127.44, 123.82, 24.17 ppm. EI-MS: m/z = 136 [M]+.
C7H8N2O (136.15): calcd. C 61.75, H 5.92, N 20.58; found: C
62.10, H 5.91, N 19.81.
[3] a) M. C. Feiters, A. E. Rowan, R. J. M. Nolte, Chem. Soc. Rev.
2000, 29, 375; b) H. C. Zhou, J. T. Groves, J. Porphyrins Phthal-
ocyanines 2004, 8, 125; c) W. D. Woggon, Acc. Chem. Res. 2005,
38, 127; d) S. Kozuch, T. Leifels, D. Meyer, L. Sbaragli, S.
Shaik, W. D. Woggon, Synlett 2005, 674; e) E. Rose, B. Andri-
oletti, S. Zrig, M. Quelquejeu-Ethève, Chem. Soc. Rev. 2005,
34, 573.
3-(4-Toluoylamino)pyridine (TolAmPy): 3-Aminopyridine (5.00 g,
53.1 mmol) was dissolved in pyridine (60 mL), p-toluoyl chloride
(15 mL, 113 mmol) was added slowly to this solution, and the mix-
ture was stirred overnight at room temperature. Aqueous HCl (1 ,
100 mL) and ethyl acetate (100 mL) were added. After phase sepa-
ration, the aqueous phase was neutralized with aqueous NaOH
(1 ), the mixture was filtered, and the residue was recrystallized
from water, affording TolAmPy. Yield: 3.86 g (34%). M.p. 126.5 °C.
1H NMR ([D6]DMSO, 200 MHz): δ = 10.45 (brs, 1 H, NH), 8.98
[4] B. Meunier, Chem. Rev. 1992, 92, 1411.
[5]
[6]
I. Tabushi, Coord. Chem. Rev. 1988, 86, 1.
a) J. P. Collman, J. L. Brauman, B. Meunier, T. Hayashi, T.
Kodadek, J. Am. Chem. Soc. 1985, 107, 2000; b) F. Montanari,
M. Penso, S. Quici, P. Vigano, J. Org. Chem. 1985, 50, 4888.
a) J. T. Groves, W. J. Kruper, R. C. Haushalter, J. Am. Chem.
Soc. 1980, 102, 6375; b) C. L. Hill, B. C. Schardt, J. Am. Chem.
Soc. 1980, 102, 6374; c) A. J. Castellino, T. C. Bruice, J. Am.
Chem. Soc. 1988, 110, 158; d) J. P. Collman, X. Zhang, R. T.
Hembre, J. I. Brauman, J. Am. Chem. Soc. 1990, 112, 5356; e)
E. Baciocchi, T. Boschi, L. Cassioli, C. Galli, L. Jaquinod, A.
Lapi, R. Paolesse, K. M. Smith, P. Tagliatesta, Eur. J. Org.
Chem. 1999, 3281.
[7]
3
(s, 1 H, PyH-2), 8.34 (d, J = 4.1 Hz, 1 H, PyH-6), 8.24 (d, 3J =
3
8.5 Hz, 1 H, PyH-4), 7.95 (d, J = 8.1 Hz, 2 H, ArH), 7.5–7.3 (m,
3 H, PyH-5 and ArH), 2.43 (s, 3 H, ArCH3) ppm; 13C{1H}NMR
(CDCl3, 75 MHz): δ = 165.96, 145.40, 142.96, 141.39, 131.30,
129.58, 127.51, 127.08, 123.78, 21.53 ppm. EI-MS: m/z = 212 (M+).
C13H12N2O·0·4H2O (219.46): C 71.15, H 5.88, N 12.77; found: C
71.57, H 5.46, N 12.30.
[8]
[9]
L. C. Yuan, T. C. Bruice, J. Am. Chem. Soc. 1986, 108, 1643.
a) B. de Poorter, B. Meunier, J. Chem. Soc., Perkin Trans. 2
1985, 1735; b) A. Cagnina, S. Campestrini, F. di Furia, P. Ghi-
otto, J. Mol. Catal. A 1998, 130, 221.
MnTMPP: Compound H2TMP (100 mg, 0.136 mmol) was dis-
solved in DMF (10 mL) and the system was heated to reflux.
Mn(OAc)2·4H2O (168 mg, 0.686 mmol) was added and the reac-
tion was monitored by UV/Vis spectroscopy. After 30 min, the re-
action was complete and the solvent was evaporated. CH2Cl2
(10 mL) and saturated aqueous NaCl solution (10 mL) were added
and the resulting mixture was stirred at room temperature over-
night. The organic layer was separated, dried with MgSO4, evapo-
rated to dryness and subjected to column chromatography (silica,
2–10% MeOH in CHCl3). The product was dissolved in the small-
est possible amount of CHCl3 and precipitated from n-hexane.
Yield: 103 mg (92%) of MnTMPP as a dark green solid. UV/Vis
(CH2Cl2): λ/nm [log(ε/–1 cm–1)] = 348 (4.60), 374 (4.69), 400 (4.58),
449 (4.07), 479 (5.01), 527 (3.74), 582 (3.97), 618 (3.92). FAB-MS:
m/z = 787 [M – Cl]+.
[10]
[11]
[12]
[13]
W. H. Wong, D. Osovic, T. C. Bruice, J. Am. Chem. Soc. 1987,
109, 3428.
D. Mansuy, P. Battioni, J. P. Renaud, J. Chem. Soc., Chem.
Commun. 1984, 1255.
P. Battioni, J. P. Renaud, J. F. Bartoli, M. Reina-Artiles, M.
Fort, D. Mansuy, J. Am. Chem. Soc. 1988, 110, 8462.
a) J. A. S. J. Razenberg, R. J. M. Nolte, W. Drenth, Recl. Trav.
Chim. Pays-Bas 1986, 105, 103; b) R. J. M. Nolte, J. A. S. J. Ra-
zenberg, R. J. W. Schuurman, J. Am. Chem. Soc. 1986, 108,
2751; c) A. W. van der Made, R. J. M. Nolte, W. Drenth, Recl.
Trav. Chim. Pays-Bas 1990, 109, 537.
[14]
[15]
[16]
B. Meunier, E. Guilmet, M.-E. de Carvalho, R. Poilblanc, J.
Am. Chem. Soc. 1984, 106, 6668.
A. W. van der Made, R. J. M. Nolte, J. Mol. Catal. 1984, 26,
333.
J. A. A. W. Elemans, M. B. Claase, P. P. M. Aarts, A. E.
Rowan, A. P. H. J. Schenning, R. J. M. Nolte, J. Org. Chem.
1999, 64, 7009.
Catalysis Experiments: Catalysis experiments were carried out in a
Schlenk tube (2ϫ2ϫ12 cm) under nitrogen. Substrate (0.6 ),
phase-transfer catalyst (tetra-n-butylammonium chloride, 5.0 m),
the axial ligand (approach A: 2.5 m; approach B: 1.25 ) and the
internal standard (1,3,5-tri-tert-butylbenzene, 0.6 m) were added
[17] A preliminary communication of this work has appeared:
J. A. A. W. Elemans, E. J. A. Bijsterveld, A. E. Rowan, R. J. M.
Nolte, Chem. Commun. 2000, 2443.
to
a solution of distilled CH2Cl2 containing Mn-porphyrin
[18]
CHARMm Version 22.0, Revision 92.0911. Resident and Fel-
lows of Harvard College, 1984, 1992, with the use of template
charges.
(2.5 m, 650 µL), together with an aqueous solution of NaOCl
(0.6 , 2.0 mL). The resulting two-phase system was magnetically
stirred at 1100 rpm. At intervals, the stirrer and timer were stopped,
and after phase separation an aliquot (1 µL) was withdrawn from
the organic phase and injected into CH2Cl2 (0.5 mL). The resulting
CH2Cl2 solution was analysed by GC and compared with authentic
samples. After 3 h, the organic phase was evaporated to dryness
[19]
[20]
M. Monteneau, J. Mispelter, B. Loock, E. Bisagni, J. Chem.
Soc., Perkin Trans. 1 1983, 189.
In UV/Vis titrations of Mn1 with pyridine- and imidazole-con-
taining ligands the Soret band at 480 nm displayed only a mini-
mal increase in intensity after the addition of Ͼ10 equiv. of
ligand, but no shift in wavelength. The obtained titration
curves could not be fitted to give reliable association constants
and for this reason host Zn1 was used as a reference. Generally,
the Ka values of N-ligands with manganese porphyrins are
somewhat lower than with zinc porphyrins.
1
and analysed by H NMR spectroscopy.
Acknowledgments
[21]
[22]
[23]
a) H. Adams, F. J. Carver, C. A. Hunter, N. J. Osborne, Chem.
Commun. 1996, 2529; b) T. Nakanaga, F. Ito, J. Phys. Chem.
A 1999, 103, 5440.
In addition to an NH···π interaction, there is also a possible
CH···π interaction between the imidazole 4-proton and the
other side-wall of the host; see part c of Figure 2.
Unfortunately the Im proton signals in the spectrum of the
complex were very broad, which prohibited their use as a diag-
nostic tool for the determination of the binding geometry of
the ligand.
The Dutch National Research School for Combination Catalysis
(NRSC-C) and the Council for the Chemical Sciences of the
Netherlands Organization for Scientific Research (CW-NWO) are
acknowledged for financial support to J. A. A. W. E. (Veni grant),
A. E. R. (Vidi grant) and R. J. M. N. (Top grant).
[1] P. R. Ortiz de Montellano (Ed.), Cytochrome P450: Structure,
Mechanism and Biochemistry, 2nd ed., Plenum Press, New
York, 1995.
756
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 751–757