G. T. Nadolski, B. S. Da6idson / Tetrahedron Letters 42 (2001) 797–800
799
allyltin necessary for coupling fragments 2 and 3.
Although application of Still’s fluorinated phospho-
nate ester (13)20 provided a good yield of cis-methyl
ester 14, for reasons described earlier, we were inter-
ested in preparing 2,4-dimethoxybenzyl ester analog
16 (Scheme 4), requiring 2,4-dimethoxybenzyl phos-
phonate ester 15 as a reagent. After extensive experi-
mentation, we developed an inexpensive, three-step
route from methylphosphonic dichloride that allows
the preparation of large amounts of 15.21 Treatment
of 9 with 15 in the presence of KHMDS and 18-
crown-6 yielded compound 16 as the exclusive
product in 83% yield. HF–pyridine cleanly removed
the TBPS group, exposing the primary alcohol, which
was oxidized to give aldehyde 17. Treatment of eno-
lizable aldehyde 17 with Eschenmoser’s salt in CH2Cl2
for 2 days followed by addition of Et3N yielded
unsaturated aldehyde 18, which was reduced to give
alcohol 19. Because of the tendency of the unsatu-
rated ester to isomerize, our original plan of convert-
2. Mooberry, S. L.; Tien, G.; Hernandez, A. H.; Plu-
brukarn, A.; Davidson, B. S. Cancer Res. 1999, 59,
653.
3. (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C.
M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H.
S.; Day, B. W. Biochemistry 1996, 35, 243; (b) Kowal-
ski, R. J.; Giannakakou, P.; Gunasekera, S.; Longley,
R. E.; Day, B. W.; Hamel, E. Mol. Pharmacol. 1997,
52, 613.
4. (a) Lindel, T.; Jensen, P. R.; Fenical, W.; Long, B. H.;
Casazza, A. M.; Carboni, J.; Fairchild, C. R. J. Am.
Chem. Soc. 1997, 119, 8744; (b) Long, B. H.; Carboni,
J. M.; Wasserman, A. J.; Cornell, L. A.; Casazza, A.
M.; Jensen, P. R.; Lindel, T.; Fenical, W.; Fairchild, C.
R. Cancer Res. 1998, 58, 1111.
5. (a) Kowalski, R. J.; Giannakakou, P.; Hamel, E. J.
Biol. Chem. 1997, 272, 2534; (b) Nicolaou, K. C.; He,
Y.; Vourloumis, D.; Vallberg, H.; Yang, Z. Angew.
Chem., Int. Ed. Engl. 1998, 37, 2014; (c) Harris, C. R.;
Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434.
6. (a) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetra-
hedron Lett. 1997, 38, 2427; (b) Shimizu, A.;
Nishiyama, S. Tetrahedron Lett. 1997, 38, 6011; (c)
Shimizu, A.; Nishiyama, S. Synlett 1999, 1209; (d)
Mulzer, J.; Hanbauer, M. Tetrahedron Lett. 2000, 41,
33; (e) Ghosh, A. K.; Wang, Y. Tetrahedron Lett. 2000,
41, 2319; (f) Ghosh, A. K.; Wang, Y. Tetrahedron Lett.
2000, 41, 4705.
ing the alcohol to
a
bromide followed by
displacement with tributylstannyllithium was aborted,
substituting the more mild method reported by Trost
and coworkers.22 To this end, 19 was acetylated to
give 20.23 In a single attempt, 20 was exposed to
Bu3SnAlEt2 and Pd(PPh3)4, providing allyl stannane
in approximately 60% yield, along with a small
amount of the hydrodestannylation product.
7. While this manuscript was in preparation, a route simi-
lar to ours for the preparation of 10 was published:
Dorling, E. K.; Ohler, E.; Mulzer, J. Tetrahedron Lett.
2000, 41, 6323.
In summary, we have reported a new synthesis of the
C1–C14 fragment of the microtubule-stabilizing agent
laulimalide. In order to facilitate deprotection of the
(Z)-a,b-unsaturated ester prior to macrolactonization,
we have incorporated a 2,4-dimethoxybenzyl ester,
which required the preparation of the new phospho-
nate ester 15. We have described both hetero Diels–
Alder and RCM approaches for the preparation of
the dihydropyran ring and have generated the requi-
site allyl stannane in the presence of the base-sensitive
(Z)-double bond. Further work toward the synthesis
of laulimalide is underway.
8. Plubrukarn, A. Ph.D. Dissertation; University of
Hawaii: Hawaii, 1999.
9. Messenger, D. T.; Davidson, B. S. Tetrahedron Lett.
2001, 42, 797.
10. Kim, C. U.; Misco, P. F. Tetrahedron Lett. 1985, 26,
2027.
11. Keck, G. E.; Li, X. Y.; Krishnamurthy, D. J. Org.
Chem. 1995, 60, 5998.
12. Paterson, I.; Smith, J. D.; Ward, R. A. Tetrahedron
1995, 51, 9413.
13. Grieco, P. A.; Speake, J. D. Tetrahedron Lett. 1998, 39,
1275.
Acknowledgements
14. Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981,
103, 5454.
15. (a) Keck, G. E.; Geraci, L. S. Tetrahedron Lett. 1993,
34, 7827; (b) Keck, G. E.; Tarbet, K. H.; Geraci, L. S.
J. Am. Chem. Soc. 1993, 115, 8467.
16. Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal,
P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.;
Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org.
Chem. 1986, 51, 2370.
We thank the NIH (CA81388) and Utah State Uni-
versity, through a New Faculty Research Grant, for
support of this research. MS data was provided by
the Washington University Mass Spectrometry
Resource with support from the NIH National Center
for Research Resources (P41RR0954).
17. Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56,
401.
18. Rutjes, F. P. J. T.; Kooistra, T. M.; Schoemaker, H. E.
Synlett 1998, 192.
References
19. Recent reviews: (a) Grubbs, R. H.; Chang, S. Tetra-
hedron 1998, 54, 4413; (b) Furstner, A. Top. Catal.
1997, 4, 285; (c) Schuster, M.; Blechert, S. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2036.
20. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24,
4405.
1. (a) Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P.
J.; Paul, V. J. J. Org. Chem. 1988, 53, 3644; (b)
Quinoa, E.; Kakou, Y.; Crews, P. J. Org. Chem. 1988,
53, 3642; (c) Jefford, C. W.; Bernardinelli, G.; Tanaka,
J.; Higa, T. Tetrahedron Lett. 1996, 37, 159.