COMMUNICATIONS
[7] T. Förster, Fluoreszenz organischer Verbindungen, Vandenhoeck and
Ruprecht, Göttingen, 1951.
[8] a) G. Hallas, J. Soc. Dyers Colour. 1967, 83, 368 ± 373; b) C. Aaron,
C. C. Barker, J. Chem. Soc. 1963, 2655 ± 2662.
[9] H. Hartmann, NATO ASI Ser. Ser. 3 1998, 52, 427 ± 444.
[10] a) H. Hartmann, S. Scheithauer, J. Prakt. Chem. 1969, 311, 827 ± 843;
b) A. F. Mikhailenko, L. I. Shevchuk, Synthesis 1973, 621 ± 622.
[11] R. Flaig, Ph.D. Thesis, Universität Halle, 1997.
[12] D. Keil, H. Hartmann, Liebigs Ann. Chem. 1995, 979 ± 984.
[13] H. Hartmann, I. Reuter, J. Prakt. Chem. 1973, 315, 144 ± 148.
[14] W. Adam, J. N. Moorthyi, W. M. Nau, J. C. Scaiano, J. Am. Chem. Soc.
1997, 119, 5550 ± 5555.
[15] 10a: Yield 82%; m.p. 140 ± 1438C (EtOH); 1H NMR (CDCl3): d
1.60 (s, 6H, CH3), 3.39 (t, 8H, NCH2), 3.77 (t, 8H, OCH2), 6.15 (s, 2H,
CH); 13C NMR (CDCl3): d 27.87, 41.93, 48.53, 66.18, 101.58, 160.27,
170.45. 10b: yield 40%; m.p. 112 ± 1178C (EtOH); 1H NMR (CDCl3):
d 1.63 (m, 18H, CH3/CH2), 3.41 (t, 8H, NCH2), 6.10 (s, 2H, CH);
13C NMR (CDCl3): d 25.01, 25.83, 28.68, 42.67, 50.24, 101.35, 161.08,
171.35.
Figure 1. Absorption spectrum (ÐÐ) and emission spectrum (´´´´) of 12a.
[16] D. Keil, R. Flaig, H. Hartmann, unpublished results.
expected, and in accordance with the rigid structure of the
dyes which prevents, or at least largely suppresses, a non-
radiative deactivation of the excited state.
The reported route to strongly fluorescent bis(2-amino-5-
thiazolyl)methinium salts 12 also indicates a simple way for
preparing specially functionalized methine dyes which can be
used, analogously to specially functionalized pyronine or
rhodamine dyes 2a,[4] as fluorescence markers for biological
and polymeric substrates.
[17] Yield 61%; m.p. 83 ± 858C (EtOH); 1H NMR (CDCl3): d 1.41 (s,
3H, CH3), 1.42 (s, 3H, CH3), 1.51 (s, 3H, CH3), 1.52 (s, 3H, CH3), 2.57
(q, 1H, CH2), 3.18 ± 3.33 (m, 2H, CH2), 3.63 (dd, 1H, CH2), 4.77 (t,
1H, CHBr), 4.98 (dd, 2H, CHBr).
[18] a) I. I. Nasarov, S. I. Savꢁyalov, Izv. Akad. Nauk SSSR Ser. Khim. 1957,
325 ± 330; I. I. Nasarov, S. I. Savꢁyalov, Zh. Obshch. Khim. 1957, 23,
1703 ± 1712; b) E. P. Kohler, J. L. E. Erickson, J. Am. Chem. Soc. 1931,
53, 2301 ± 2309; c) B. M. Jacobson, P. Soteropoulos, S. Bahadori, J.
Org. Chem. 1988, 53, 3247 ± 3255.
[19] 11a: Yield 76%; m.p. 220 ± 2228C (toluene/MeOH); 1H NMR
(CDCl3): d 1.49 (s, 6H, CH3), 3.41 (t, 8H, NCH2), 3.78 (t, 8H,
OCH2), 3.82 (s, 2H, CH2); 13C NMR (CDCl3): d 23.33, 28.16, 38.78,
48.57, 66.18, 111.60, 153.49, 169.76; 11b: yield 66%; m.p. 275 ± 2778C
(toluene); 1H NMR (CDCl3): d 1.53 (s, 6H, CH3), 1.65 (m, 12H,
CH2), 3.43 (m, 8H, CH2), 3.81 (s, 2H, CH2); 13C NMR (CDCl3): d
24.06, 25.04, 25.78, 28.89, 39.44, 50.25, 111.44, 154.25, 170.66; 11c:
yield 79%; m.p. 250 ± 2528C (toluene); 1H NMR (CDCl3): d 1.59 (s,
6H, CH3), 2.01 (m, 8H, CH2), 3.45 (t, 8H, CH2), 3.83 (s, 2H, CH2);
13C NMR (CDCl3): d 24.20, 26.33, 28.85, 39.56, 50.05, 110.52, 154.47,
166.67; 11d: yield 66%; m.p. 153 ± 1548C (n-butanol); 1H NMR
(CDCl3): d 1.64 (s, 6H, CH3), 3.56 (s, 6H, NCH3), 3.72 (s, 2H, CH2),
7.23 (m, 2H, CH), 7.42 (m, 8H, CH); 13C NMR (CDCl3): d 23.81,
28.97, 39.41, 40.53, 112.16, 124.99, 126.28, 130.13, 147.36, 153.84, 168.57.
[20] The UV/Vis absorption and emission spectra were recorded with an
MC 40 spectrometer (Zeiss) and Lambda 900 Spectrometer (Perkin-
Elmer), respectively, the NMR spectra with a 300 MHz Spectrometer
(Varian). The authors are indebted to Mrs. C. Koenig and Mrs. A.
Schroeder for recording the NMR and UV/Vis absorption and
emission data, respectively.
Experimental Section
Preparation of the isopropylidene-bridged N,N,N',N'-tetrasubstituted
bis(2-amino-5-thiazolyl)methinium salts 12:
Method A: To a mixture of a 4-(2-(2-dialkylamino-4-thiazolyl)-2-propyl)-2-
dialkylamino-thiazole 10 (0.01 mol) and DMF (20 mL) POCl3 (0.02 mol,
3.0 g) was added dropwise under stirring at RT. After stirring for 3 h the
reaction mixture was added dropwise, to a cooled solution of tetrafluoro-
boric acid (40%, 5 mL) in methanol (20 mL). The products precipitated
after addition of diethyl ether (100 mL) and were isolated by filtration. As
indicated by their 1H NMR spectra the products in each case were a
mixture of the corresponding dyes 12 and their dimers, from which the
desired products could not be isolated, only identified by their character-
1
istic H NMR spectra and their intense fluorescence.
Method B: A mixture of a 2,6-bis(dialkylamino)-4,4-dimethyl-4,8-dihydro-
thiazolo[4,5-f]benzothiazole 11 (0.01 mol) and triphenylmethyl tetrafluoro-
borate (3.30 g, 0.01 mol) in acetonitrile (50 mL) was heated at reflux for
24 h. After cooling and reducing the volume to 5 mL diethyl ether (20 mL)
was added to the reaction mixture and the precipitated 12 was isolated by
filtration.
[21] The observed bathochromic shift can be explained if an S S-
interaction is assumed which gives rise to a pronounced hypsochromic
effect in the color band of the unbridged dye 4b; see: J. Fabian, H.
Hartmann, K. Fabian, Tetrahedron 1973, 29, 2609 ± 2619.
Received: July 21, 2000 [Z15499]
[1] a) W. Schmidt, F. P. Schäfer, Z. Naturforsch. A 1967, 22, 1563; b) A. N.
Rubinov, V. A. Mostovnikov, Bull. Acad. Sci. USSR Phys. Ser. 1968,
32, 1456.
[2] a) ªLaser Dyesº: K. H. Drexhage, Top. Appl. Phys. 1973, 1, 144 ± 274;
b) R. Sens, Ph.D. Thesis, Universität Giessen, 1984.
[3] S. Seeger, G. Bachteler, K. H. Drexhage, J. Ardn-Jacob, G. Deltau, K.
Galla, K. T. Han, R. Müller, M. Möller, A. Rumphorst, M. Sauer, A.
Schulz, J. Wolfrum, Ber. Bunsenges. Phys. Chem. 1993, 97, 1542 ± 1548.
[4] R. Raue, H. Harnisch, K. H. Drexhage, Heterocycles 1984, 21, 167 ±
190.
[5] G. Hoffmann, A. Schönbucher, H. Steidl, Z. Naturforsch. A 1973, 28,
1136 ± 1139.
[6] J. Fabian, H. Hartmann, Light Absorptions of Organic Colorants,
Springer, Berlin, 1980.
554
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4003-0554 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 3