10.1002/cssc.201903364
ChemSusChem
COMMUNICATION
(initial TOF of 29,000 h-1 and TON of 160,000) and continuous-
flow process (productivity of 915 mmol h-1 gRu-1). The catalyst
shows excellent stability during both hydrogenation processes,
with good selectivity. The simplicity of the catalytic process, with
high efficacy and durability, thus provides a promising venue for
realizing industrial-scale hydrogenation of CO2 to DMF.
[8]
(a) W. Wang, C. Li, L. Yan, Y. Wang, M. Jiang, Y. Ding, ACS Catal. 2016,
6, 6091-6100; (b) W. Wang, L. Cui, P. Sun, L. Shi, C. Yue, F. Li, Chem.
Rev. 2018, 118, 19, 9843-9929; (c) G. H. Gunasekar, K. Park, H. Jeong,
K. D. Jung, K. Park, S. Yoon, Catalysts. 2018, 8, 295; (d) G. H.
Gunasekar, S. Yoon, J. Mater. Chem. A. 2018, 7, 14019-14026; (e) G.
H. Gunasekar, H. Kim, S. Yoon, Sustainable Energy Fuels 2019, 3, 1042-
1047; (f) S. Kramer, N. R. Bennedsen, S. Kegnaes, ACS Catal. 2018, 8,
6961−6982; (g) Y. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41,
2083-2094; (h) S. Padmanaban, G. H. Gunasekar, M. Lee, S. Yoon, ACS
Sustainable Chem. Eng. 2019, 7, 8893-8899; (i) S. Rajendiran, G. H.
Gunasekar, S. Yoon, New J. Chem. 2018, 42, 12256-12262; (j) P.
Sudakar, G. H. Gunasekar, I. H. Baek, S. Yoon, Green Chem. 2016, 18,
6456-6461.
Acknowledgements
We acknowledge the financial support provided by the Korea
CCS R&D Centre (KCRC) grant funded by the Korean
government (Ministry of Science, ICT and Future Planning) (no.
2014M1A8A1049300).
[9]
(a) P. J. C. Hausoul, T. M. Eggenhuisen, D. Nand, M. Baldus, B. M.
Weckhuysen, R. J. M. Klein Gebbink, P. C. A. Bruijnincx, Catal. Sci.
Technol. 2013, 3, 2571-2579; (b) J. Fritsch, F. Drache, G. Nickerl, W.
Böhlmann, S. Kaskel, Micropor. Mesopor. Mat. 2013, 172, 167–173; (c)
P. J. C. Hausoul, C. Broicher, R. Vegliante, C. Gob, R. Palkovits, Angew.
Chem. Int. Ed. 2016, 55, 5597 –5601; (d) A. Kann, H. Hartmann, A.
Besmehn, P. J. C. Hausoul, R. Palkovits, ChemSusChem 2018, 11,
1857-1865.
Keywords: DMF synthesis via CO2 hydrogenation • Phosphine-
based heterogeneous catalyst • Continuous flow CO2
hydrogenation • Porous organic polymer • Heterogeneous CO2
hydrogenation.
[10] (a) S. Wang, S. Hou, C. Wu, Y. Zhao, X. Ma, Chin. Chem. Lett. 2019, 30,
398-402; (b) D. J. Morgan, Surf. Interface Anal. 2015, 47, 1072-1079.
[11] (a) K. Deng, B. Hu, Q. Lu, X. Hong, Catal. Commun. 2017, 100, 81-84.
(b) M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, Catalysts 2019, 9, 275.
[12] (a) G. H. Gunasekar, J. Shin, K. D. Jung, K. Park, S. Yoon, ACS Catal.
2018, 8, 4346-4353; (b) R. Sun, A. Kann, H. Hartmann, A. Besmehn, P.
J. C. Hausoul, R. Palkovits, ChemSusChem 2019, 12, 3278-3285.
[13] V. V. Ranade, R. V. Chaudhari, P. R. Gunjal, Trickle bed reactors,
Reactor Engineering & Applications, 2011, 1-23.
[1]
[2]
(a) I. Dincer, Energy Policy 1999, 27, 845-854; (b) R. Ulber, D. Sell, T.
Hirth Renewable Raw Materials: New Feedstocks for the Chemical
Industry, Wiley-VCH, Weinheim, 2011.
(a) M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley-VCH,
Weinheim, 2011 (b) G. Centi, E. A. Quadrelli, S. Perathoner, Energy
Environ. Sci. 2013, 6, 1711-1731; (c) M. Mikkelsen, M. Jorgensen, F. C.
Krebs, Energy Environ. Sci. 2010, 3, 43-81; (d) M. Aresta, A. Dibenedetto,
A. Angelini, Chem. Rev. 2014, 114, 1709-1742.
[3]
(a) M. Aresta, A. Dibenedetto, E. Quaranta, J. Catal. 2016, 343, 2-45; (b)
G. H. Gunasekar, K. Park, K. D. Jung, S. Yoon, Inorg. Chem. Front. 2016,
3, 882-895; (c) A. Rafiee, K. R. Khalilpour, D. Milani, M. Panahi, J.
Environ. Chem. Eng. 2018, 6, 5771-5794; (d) G. H. Gunasekar, K. D.
Jung, S. Yoon, Inorg. Chem. 2019, 58, 3717-3723; (e) M. D. Burkart, N.
Hazari, C. L. Tway, E. L. Zeitler, ACS Catal. 2019, 9, 7937-795; (f) G. H.
Gunasekar, Y. Yoon, I.-H. Baek, S. Yoon, RSC Adv. 2018, 8, 1346-1350.
J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew.
Chem. Int. Ed. 2016, 55, 7296 – 7343; Angew. Chem. 2016 128 7416-
7467.
…
[4]
[5]
[a] S. Ding, N. Jiao, Angew. Chem. Int. Ed. 2012, 51, 9226; Angew. Chem.
2012, 124, 9360.(b) H. Bipp, H. Kieczka, Formamides, Ullmann’s
Encyclopedia of Industrial Chemistry, Wily-VCH Weinheim, 2011; [c] D.
J. Loder,1940, US2204371
[6]
(a) P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1994,
116, 8851-8852; (b) P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 344-355; (c) C. Federsel, A. Boddien, R. Jackstell,
R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew.
Chem. Int. Ed. 2010, 49, 9777 –9780; (d) R. Kuhlmann, A. Prullage, K.
Kunnemann, A. Behr, V. J. Vorholt, J. CO2 Util. 2017, 22, 184-190; (e) R.
Kuhlmann, K. U. Kunnemann, L. Hinderink, A. Behr, V. J. Vorholt, ACS
Sustain. Chem. Eng. 2019, 7, 4924-4931; (f) R. Kuhlmann, S. Schmitz,
K. Babmann, A. Prullage, A. Behr, Appl. Catal A-Gen. 2017, 539, 90-96.
(g) R. Kuhlmann, M. Nowotny, K. U. Kunnemann, A. Behr, V. J. Vorholt,
J. Catal. 2018, 361, 45-50; (h) L. Zhang, Z. Han, X. Zhao, Z. Wang, K.
Ding, Angew. Chem. Int. Ed. 2015, 54, 6186 –6189;
[7]
(a) O. Krocher, R. A. Koppel, M. Froba, A. Baiker, J. Catal. 1998, 178,
284-298; (b) J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan,
B. Han, Chem. Commun. 2010, 46, 5770–5772. (c) Q.-Y. Bi, J.-D. Lin,
Y.-M. Liu, S.-H. Xie, H.-Y. He, Y. Cao, Chem. Commun. 2014, 50,
9138—9140; (d) S. Kumar, P. Kumar, A. Deb, D. Maiti, S. L. Jain, Carbon
2016, 100, 632-640. (e) Y. Wu, T. Wang, H. Wang, X. Wang, X. Dai, F.
Shi, Nat. Commun. 2019, 10, 2599.
This article is protected by copyright. All rights reserved.