10.1002/anie.202006016
Angewandte Chemie International Edition
COMMUNICATION
[15] a) C. D. Campbell, C. W. Rees, J. Chem. Soc. C. 1969, 5, 742-747; b) H.
Kato, S. Nakazawa, T. Kiyosawa, K. Hirakawa, J. Chem. Soc., Perkin
Trans. 1 1976, 672-675; c) J. H. Rigby, D. D. Holsworth, K. James, J.
Org. Chem. 1989, 54, 4019-4020; d) H. Sakurai, H. Sakaba, Y.
Nakadaira, J. Am. Chem. Soc. 1982, 104, 6156-6158; e) T. M. Cresp, D.
Wege, Tetrahedron 1986, 42, 6713-6718.
Acknowledgements
We thank the Natural Science Foundation of China
(21861132003, 21672217and 21521002) and Tsinghua
University Initiative Scientific Research Program for financial
support. S.L. is supported by the National Program of Top-notch
Young Professionals.
[16]
a) F. Corbani, B. Rindone, C. Scolastico, Tetrahedron Lett. 1972, 13,
2597-2600; b) F. Corbani, B. Rindonek, C. Scolastico, Tetrahedron 1973,
29, 3253-3257; c) Ž. Čeković, J. Bošnjak, M. Cvetković, Tetrahedron Lett.
1980, 21, 2675-2678; d) A. G. Schultz, M. A. Holoboski, Tetrahedron Lett.
1993, 34, 3021-3024.
Keywords: chiral primary amine • electrochemical catalysis•
asymmetric arylation • benzyne • enamine
[17]
The reason is unclear but may be rationalized by considering that
enamines derived from cyclic β-ketoesters are thermodynamically more
stable than those from acyclic β-ketoesters according to DFT
calculations, hence the active concentration of cyclic enamine would be
larger, favouring its coupling with the fleeting benzyne. See: H. Carneros,
D. Sanchez, J. Vilarrasa, Org. Lett. 2014, 16, 2900-2903.
[1] R. N. Gourley, J. Grimshaw, P. G. Millar, Chem. Commun. 1967, 24, 1278-
1279.
[2] a) H. Nozaki, S. Moriuti, H. Takaya, R. Noyori, Tetrahedron Lett. 1966, 43,
5239-5244; b) W. S. Knowles, M. J. Sabacky, Chem. Commun. 1968, 22,
1445-1446.
[18] G. Wittig, A. Krebs, Chem. Ber. 1961, 94, 3260-3275.
[19] a) V. Gandon, C. Aubert, M. Malacria, Chem. Commun. 2006, 21, 2209-
2217; b) P. Gandeepan, C. Cheng, Acc. Chem. Res. 2015, 48, 1194-
1206. c) T. Zheng, H. Sun, Y. Chen, X. Li, S. Dürr, U. Radius, K. Harms,
Organometallics 2009, 28, 5771-5776.
[3]
For selected reviews, see: a) R. Brimioulle, D. Lenhart, M. M. Maturi, T.
Bach, Angew. Chem. Int. Ed. 2015, 54, 3872-3890; Angew. Chem. 2015,
127, 3944-3963; b) Y. Q. Zou, F. M. Hörmann, T. Bach, Chem. Soc. Rev.
2018, 47, 278-290; c) Y. Inoue, Chem. Rev. 1992, 92, 741-770.
[20] M. J. Frisch, et al. Gaussian 09, revision D.01, Gaussian, Inc., 2013. See
Supporting Information for full citation and calculation details.
[21] a) I. Fernández, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967;
b) F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070-
10086; Angew. Chem. 2017, 129, 10204-10221; c) K. N. Houk. F. Liu,
Y. Yang, X. Hong, App. Theo. Org. Chem. 2018, 371-402.
[4] For selected reviews, see: a) K. D. Moeller, Tetrahedron 2000, 49, 9527-
9554; b) J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605-621;
c) J. I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008,
108, 2265-2299; d) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A.
Palma, Vasquez-Medrano, R. Green Chem. 2010, 12, 2099-2119; e) R.
Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492-2521; f) S. R.
Waldvogel, B. Janza, Angew. Chem. Int. Ed. 2014, 53, 7122-7123;
Angew. Chem. 2014, 126, 7248-7249; g) M. Yan, Y. Kawamata, P. S.
Baran, Chem. Rev. 2017, 117, 13230-13319; h) Y. Jiang, K. Xu, C. Zeng,
Chem. Rev. 2018, 118, 4485-4540; i) C. Ma, P. Fang, T. S. Mei, ACS
Catal. 2018, 8, 7179-7189; j) N. Sauermann, T. H. Meyer, Y. Qiu, L.
Ackermann, ACS Catal. 2018, 8, 7086-7103.
[22] We also tried to located the transition structures involving H-transfer with
protonated tertiary amine N-H (without counterion), but no transition state
could be identified for the major enantiomer and the reaction involving
this process seems barrierless.
[5] For reviews, see: a) Q. Lin, L. Li, S. Luo, Chem. Eur. J. 2019, 25, 10033-
10044; b) M. Ghosh, V. S. Shinde, M. Rueping, Beilstein J. Org. Chem.
2019, 15, 2710–2746. For recent examples: c) F. Y. Lu, Y. J. Chen, Y.
Chen, X. Ding, Z. Guan, Y. H. He, Chem. Comm. 2020, 56, 623-626. d)
T. J. DeLano, S. E. Reisman, ACS Catal. 2019, 9, 6751−6754. e) P. S.
Gao, X. J. Weng, Z. H. Wang, C. Zheng, B. Sun, Z. H. Chen, S. L. You,
T. S. Mei, Angew. Chem. Int. Ed. 2020, 10.1002/anie.202005099; Angew.
Chem. 2020, 10.1002/ange.202005099. f) H. Qiu, B. Shuai, Y. Z. Wang,
D. Liu, Y. G. Chen, P. S. Gao, H. X. Ma, S. Chen, T. S. Mei, J. Am. Chem.
Soc. 2020, org/10.1021/jacs.9b13117.
[6]
K. L. Jensen, P. T. Franke, L. T. Nielsen, K. Daasbjerg, K. A. Jørgensen,
Angew. Chem. Int. Ed. 2010, 49, 129-133; Angew. Chem.
2010, 122, 133-137.
[7]
[8]
N. Fu, L. Li, Q. Yang, S. Luo, Org. Lett. 2017, 19, 2122-2125.
X. Huang, Q. Zhang, J. Lin, K. Harms, E. Meggers, Nat. Catal. 2019, 2,
34-40.
[9]
Zhang, Q.; Chang, X.; Peng, L.; Guo, C. Angew. Chem. Int. Ed. 2019, 58,
6999-7003; Angew. Chem. 2019, 131, 7073-7077.
[10] N. Fu, L. Song, J. Liu, Y. Shen, J. C. Siu, S. Lin, J. Am. Chem. Soc. 2019,
141, 14480-14485.
[11] a) P. M. Tadross, B. M. Stoltz, Chem. Rev. 2008, 112, 3550-3577; b) Z.
Zamiraei, Chem. Biol. Interface 2017, 7, 217-223; c) N. F. Nathel, L. A.
Morrill, H. Mayr, N. K. Garg, J. Am. Chem. Soc. 2016, 138, 10402-10405;
d) J. He, D. Qiu, Y. Li, Acc. Chem. Res. 2020, 53, 508-519.
[12] E. Picazo, S. M. Anthony, M. Giroud, A. Simon, M. A. Miller, K. N. Houk,
N. K. Garg, J. Am. Chem. Soc. 2018, 140, 7605-7610.
[13] For selected examples, see: a) L. Zhang, N. Fu, S. Luo, Acc. Chem. Res.
2015, 48, 986-997; b) Y. Zhu, L. Zhang, S. Luo, J. Am. Chem. Soc. 2016,
138, 3978-3981; c) Q. Yang, L. Zhang, C. Ye, S. Luo, L. Wu, C. Tung,
Angew. Chem. Int. Ed. 2017, 56, 3694-3698; Angew. Chem. 2017, 129,
3748-3752; d) L. Zhu, L. Zhang, S. Luo, Angew. Chem. Int. Ed. 2018,
57, 2253-2258; Angew. Chem. 2018, 130, 2275-2280; e) Y. Li, D. Wang,
L. Zhang, S. Luo, J. Org. Chem. 2019, 84, 12071-12090; f) Y. Han, L.
Zhang, S. Luo, Org. Lett. 2019, 21, 7258-7261.
[14] X. Xie, Y. Chen, D. Ma, J. Am. Chem. Soc. 2006, 128, 16050-16051.
This article is protected by copyright. All rights reserved.