A. V. Butin et al. / Tetrahedron Letters 42 (2001) 2031–2033
2033
The o-tosylaminobenzylfurans 4 were obtained via the
well-known alkylation reaction of furans with the
appropriate alcohols 512 in high yields (Scheme 1).
7. (a) Makosza, M.; Danikiewicz, W.; Wojciechowski, K.
Liebigs Ann. Chem. 1988, 203; (b) Macor, J. E.; Wehner,
J. M. Tetrahedron Lett. 1991, 32, 7195; (c) Marino, J. P.;
Hurt, C. R. Synth. Commun. 1994, 24, 839.
Compounds 4, when heated in ethanolic HCl, were
converted into indoles 6 in good yields13 (Scheme 2).
We believe that the mechanism of the reaction is similar
to one described earlier for benzofuran derivatives.11,14
8. See the following reviews: (a) Dean, F. M. Adv. Hetero-
cyclic Chem. 1982, 30, 167; (b) Dean, F. M. Adv. Hetero-
cyclic Chem. 1982, 31, 237; (c) Piancatelli, G.; D’Auria,
M.; D’Onofrio, F. Synthesis 1994, 867.
9. (a) Jones, G.; McKinley, W. H. Tetrahedron Lett. 1977,
18, 2457; (b) Jones, G.; McKinley, W. H. J. Chem. Soc.,
Perkin Trans. 1 1979, 599.
10. (a) Butin, A. V.; Abaev, V. T.; Stroganova, T. A. Khim.
Geterotsikl. Soedin. 1995, 1578; (b) Butin, A. V.;
Stroganova, T. A.; Abaev, V. T.; Zavodnik, V. E. Khim.
Geterotsikl. Soedin. 1997, 1614; (c) Butin, A. V.; Abaev,
V. T.; Stroganova, T. A.; Gutnov, A. V. Molecules 1997,
2, 62.
11. (a) Butin, A. V.; Krapivin, G. D.; Zavodnik, V. E.;
Kul’nevich, V. G. Khim. Geterotsikl. Soedin. 1993, 616;
(b) Abaev, V. T.; Gutnov, A. V.; Butin, A. V. Khim.
Geterotsikl. Soedin. 1998, 603; (c) Gutnov, A. V.; Butin,
A. V.; Abaev, V. T.; Krapivin, G. D.; Zavodnik, V. E.
Molecules 1999, 4, 204; (d) See the following review:
Butin, A. V.; Gutnov, A. V.; Abaev, V. T.; Krapivin, G.
D. Molecules 1999, 4, 52.
12. Typical procedure is as follows: To a boiling solution of
5d (4.13 g, 10 mmol) in CH2Cl2 (120 mL), p-TsOH (40
mg) and 2-methylfuran (3.7 mL, 40 mmol) were added.
The reaction mixture was heated to reflux for 3–5 min,
then cooled and washed with NaHCO3 solution, water,
dried over Na2SO4, evaporated to one-third its initial
volume. After addition of hexane the residue obtained
was crystallized to afford 4d as colorless crystals (3.9 g,
82% yield). Mp 125–126°C (hexane/CH2Cl2); anal. found:
C, 67.63; H, 5.51; N, 3.27. C27H27NO5S requires: C,
67.90; H, 5.70; N, 2.93%; wmax (Nujol): 3300 cm−1; lH (60
In conclusion, we would like to point out that this
method of indole synthesis is general and allows varia-
tion of the substituents R, R% and R¦. Additionally the
presence of the alkanone side chain in the indoles 6
substantially extends the possibilities for their synthetic
application. Thus, for example, compounds 6 can be
utilized as convenient intermediates for the synthesis of
mytomicin and mitosene derivatives and new synthetic
analogs of the antitumor drug EO-9.15
Acknowledgements
The authors are grateful to Professor Gurnos Jones for
his interest in this work and assistance in the prepara-
tion of the manuscript. We also wish to thank our
young colleague Sergey Smirnov, student of the
Department of Chemical Technology of the Kuban
State Technological University, for his assistance in the
experimental work.
References
1. Abaev, V. T.; Gutnov, A. V.; Butin, A. V.; Zavodnik, V.
E. Tetrahedron 2000, 56, 8933.
2. See the following reviews: (a) Gribble, G. W. J. Chem.
Soc., Perkin Trans. 1 2000, 1045; (b) Sundberg, R. J.
Indoles; Academic Press: London, 1996.
3. (a) Roberts, D.; Alvarez, M.; Joule, J. A. Tetrahedron
Lett. 1996, 37, 1509; (b) Alvarez, M.; Bros, M. A.; Joule,
J. A. Tetrahedron Lett. 1998, 39, 679; (c) Alvarez, M.;
Bros, M. A.; Gras, G.; Ajana, W.; Joule, J. A. Eur. J.
Org. Chem. 1999, 1173; (d) Kraus, G. A.; Selvakumar, N.
Synlett 1998, 845; (e) Shin, C.; Yamada, Y.; Hayashi, K.;
Yonezawa, Y.; Umemura, K.; Tanji, T.; Yoshimura, J.
Heterocycles 1996, 43, 891; (f) Cushing, T. D.; Sanz-
Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1996,
118, 557.
MHz, CCl4): 2.15 (3H, s, CH3
(3H, s, OCH3), 3.62 (3H, s, OCH3
5.48 (1H, d, J=3.2 Hz, 3-HFur), 5.67 (1H, d, J=3.2 Hz,
4-HFur), 6.15 (1H, s, HAr), 6.32 (1H, s, NH), 6.57–6.82
6
), 2.35 (3H, s, CH3
6
), 3.47
6
6
), 4.90 (1H, s, CH
6
),
6
(3H, m, HAr), 6.92–7.25 (5H, m, HAr), 7.52 (2H, d, J=8.5
Hz, HAr).
13. Typical procedure is as follows: A solution of 4d (4.77 g,
10 mmol) in ethanolic HCl (150 mL) was heated to reflux
for 15 min, cooled and then poured into water. The
crystalline product was filtered off, washed with water,
air-dried and recrystallized from hexane/CH2Cl2 mixture
to give indole 6d (3.8 g, 80% yield). Mp 175–176°C; anal.
found: C, 68.15; H, 5.44; N, 2.61. C27H27NO5S requires:
C, 67.90; H, 5.70; N, 2.93%; wmax (Nujol): 1700 cm−1; lH
4. (a) Taga, M.; Ohtsuka, H.; Inoue, I.; Kawaguchi, T.;
Nomura, S.; Yamada, K.; Date, T.; Hiramatsu, H.; Sato,
Y. Heterocycles 1996, 42, 251; (b) Stephensen, H.;
Zaragoza, F. Tetrahedron Lett. 1999, 40, 5799.
5. (a) Tsuji, Y.; Kotachi, S.; Huh, K.-T.; Watanabe, Y. J.
Org. Chem. 1990, 55, 580; (b) Webb, R. R.; Venuti, M.
C.; Eigenbrot, C. J. Org. Chem. 1991, 56, 4706.
6. (a) Plieninger, H.; Meyer, E.; Sharif-Nassirian, F.; Weid-
mann, E. Liebigs Ann. Chem. 1976, 1475; (b) Danishef-
sky, S. J.; Phillips, G. B. Tetrahedron Lett. 1984, 25, 3159;
(c) Maehr, H.; Smallheer, J. J. Am. Chem. Soc. 1985, 107,
2943.
(60 MHz, CDCl3): 2.07 (3H, s, COCH3
CH3), 2.70–2.93 (2H, m, -CH2), 3.02–3.24 (2H, m, -CH2
3.73 (3H, s, OCH3), 3.93 (3H, s, OCH3), 6.68 (1H, s,
Ind), 7.07–7.67 (9H, m, HAr), 7.83 (1H, s, HInd).
6
), 2.27 (3H, s,
6
6
6
),
6
6
H
14. Voronin, S. P.; Gubina, T. I.; Markushina, I. A.;
Kharchenko, V. G. Khim. Geterotsikl. Soedin. 1989, 219.
15. (a) Kinugawa, M.; Arai, H.; Nishikawa, H.; Sakaguchi,
A.; Ogasa, T.; Tomioka, S.; Kasai, M. J. Chem. Soc.,
Perkin Trans. 1 1995, 2677; (b) Cotterill, A. S.; Moody,
C. J.; Roffey, J. R. A. Tetrahedron 1995, 26, 7223; (c) See
the following review: Danishefsky, S. M.; Schkeryantz, J.
M. Synlett 1995, 475.
.
.