Organic Letters
Letter
some 4-substituted nicotinic acids and nicotinamides. J. Chem. Soc. C
1966, 0, 1816−1821.
ACKNOWLEDGMENTS
■
Financial support from the Academy of Finland (Project No.
129062) is acknowledged. The Finnish National Centre for
Scientific Computing (CSC) is recognized for computational
resources.
(16) Gelder, E. A.; Jackson, S. D.; Lok, C. M. The hydrogenation of
nitrobenzene to aniline: a new mechanism. Chem. Commun. 2005,
522−524.
̈
(17) Haber, F. Uber stufenweise reduktion des nitrobenzol mit
begrenztem kathodpotential. Z. Elektrochem. Angew. Phys. Chem. 1898,
4, 506−514.
REFERENCES
■
́
(18) (a) Biczok, L.; Gupta, N.; Linschitz, H. Coupled electron-
(1) Selected reviews: (a) Handbook of reagents for organic synthesis,
oxidising and reducing agents; Burk, S. D., Danheiser, R. L., Eds.;
Wiley-VCH: New York, 1999. (b) Nitro compounds, aromatic. In
Ullmann’s Encyclopedia of Industrial Chemistry; Booth, G., Ed.; Wiley-
VCH: Weinheim, 2012.
(2) Selected reviews: (a) Hydrogenation methods; Rylander, P. N.,
Ed.; Academic Press: New York, 1985. (b) Comprehensive organic
synthesis. Selectivity, strategy and efficiency in modern organic chemistry;
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991.
proton transfer in interactions of triplet C60 with hydrogen-bonded
phenols: Effects of solvation, deuteration, and redox potentials. J. Am.
Chem. Soc. 1997, 119, 12601−12609. (b) Qiu, G.; Knowles, R. R.
Rate-driving force relationship in multisite proton-coupled electron
transfer activation of ketones. J. Am. Chem. Soc. 2019, 141, 2721−
2730.
(3) Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent
developments in the reduction of aromatic and aliphatic nitro
compounds to amines. Org. Process Res. Dev. 2018, 22, 430−445.
(4) Selected reviews: (a) Valenzuela, M. A.; Albiter, E.; Ríos-Berny,
̈
́
O.; Cordova, I.; Flores, S. O. Photocatalytic Reduction of Organic
Compounds. J. Adv. Oxid. Technol. 2010, 13, 321−340. (b) Kadam,
H. K.; Tilve, S. G. Advancement in methodologies for reduction of
nitroarenes. RSC Adv. 2015, 5, 83391−83407.
(5) Organic photoredox catalysis reviews: (a) Prier, C. K.; Rankic,
D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with
transition metal complexes: applications in organic synthesis. Chem.
Rev. 2013, 113, 5322−5363. (b) Shaw, M. H.; Twilton, J.; MacMillan,
D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem.
2016, 81, 6898−6926. (c) Romero, N. A.; Nicewicz, D. A. Organic
photoredox catalysis. Chem. Rev. 2016, 116, 10075−10166.
(6) Fukuzumi, S.; Tokuda, Y. Efficient six-electron photoreduction
of nitrobenzene derivatives by 10-Methyl-9,10-dihydroacridine in the
presence of perchloric acid. Bull. Chem. Soc. Jpn. 1992, 65, 831−836.
(7) Hirao, T.; Shiori, J.; Okahata, N. Ruthenium−bipyridine
complex catalyzed photo-induced reduction of nitrobenzenes with
hydrazine. Bull. Chem. Soc. Jpn. 2004, 77, 1763−1764.
(8) Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduc-
tion of 4-nitrophenol by resin-supported dye under the visible
irradiation. Appl. Catal., B 2011, 105, 317−325.
(9) Yang, X.-J.; Chen, B.; Zheng, L.-Q.; Wu, L.-Z.; Tung, C.-H.
Highly efficient and selective photocatalytic hydrogenation of
functionalized nitrobenzenes. Green Chem. 2014, 16, 1082−1086.
(10) Todorov, A. R.; Wirtanen, T.; Helaja, J. Photoreductive
removal of O-benzyl groups from oxyarene N-heterocycles assisted by
O-pyridine−pyridone tautomerism. J. Org. Chem. 2017, 82, 13756−
13767.
(11) Vale, N.; Moreira, R.; Gomes, P. Primaquine revisited six
decades after its discovery. Eur. J. Med. Chem. 2009, 44, 937−953.
(12) Loria, P.; Miller, S.; Foley, M.; Tilley, L. Inhibition of the
peroxidative degradation of haem as the basis of action of chloroquine
and other quinoline antimalarials. Biochem. J. 1999, 339, 363−370.
(13) Berman, J.; Brown, T.; Dow, G.; Toovey, S. Tafenoquine and
primaquine do not exhibit clinical neurologic signs associated with
central nervous system lesions in the same manner as earlier 8-
aminoquinolines. Malar. J. 2018, 17, 1−12.
(14) (a) Edson, J. B.; Spencer, L. P.; Boncella, J. M. Photorelease of
primary aliphatic and aromatic amines by visible-light-induced
electron transfer. Org. Lett. 2011, 13, 6156−6159. (b) Binstead, R.
A.; McGuire, M. E.; Dovletoglou, A.; Seok, W. K.; Roecker, L. E.;
Meyer, T. J. Oxidation of hydroquinones by [(bpy)2(py)RuIV(0)]2+
and [(bpy)2(py)RuIII(OH)]2+. Proton-coupled electron transfer. J.
Am. Chem. Soc. 1992, 114, 173−186.
(15) (a) Brown, E. V. Preparation and Reactions of 2-Nitropyridine-
l-oxides. J. Am. Chem. Soc. 1957, 79, 3565−3566. (b) Emerson, T. R.;
Rees, C. W. The deoxygenation of heterocyclic N-oxides. Part III.
Kinetics of their reactions with phosphorus trichloride in chloroform.
J. Chem. Soc. 1964, 0, 2319−2325. (c) Ross, W. C. The preparation of
E
Org. Lett. XXXX, XXX, XXX−XXX