2426
J. L. Duffy et al. / Bioorg. Med. Chem. Lett. 12 (2002) 2423–2426
Table 3. Pharmacokinetics ofHIV-protease inhibitors in dogs po (5 mg/kg) and iv (2 mg/kg)
Compd
R
Cmax (mM)
t1=2 (min)
A.U.C. (mM h)
CLp (mL/min/kg)
% F
1
11
C(CH3)3
CH2CF3
8.8
17.0
62
52
7.4
18.8
14.2
4.01
81
65
Table 4. In vitro metabolic assays ofinvestigational HIV-protease inhibitors
a
Compd
CLint (mL/min/kg)
CYP3A4 IC50 (mM)
CYP2D6 IC50 (mM)
Indinavirb
1
11
0.15
0.31
0.03
>30.0
2.43
0.52
34 (64)
22 (50)
aMeasured in human liver microsomes.
bClearance values for Indinavir measured in tandem experiments are given in parentheses.
6. Castro, C. E.; Gaughan, E. J.; Owsley, D. C. J. Org. Chem.
1966, 31, 4071.
the t-butylamide analogue (1) is a potent inhibitor of
CYP3A4 in its own right (IC50=0.31 mM), the corre-
sponding trifluoroethylamide substituent confers over a
10-fold increase in potency against this metabolic
enzyme. This same increase in potency was observed in
7. The epoxide VII may be synthesized in direct analogy to
the aminoindanol derivative: Maligres, P. E.; Upadhyay, V.;
Rossen, K.; Cianciosi, S. J.; Purick, R. M.; Eng, K. K.;
Reamer, R. A.; Askin, D.; Reider, P. J. Tetrahedron Lett.
1995, 36, 2195.
8. Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.;
McDaniel, S. L.; Darke, P. L.; Zugay, J.; Quintero, J. C.;
Blahy, O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J.;
Graham, P. I.; Condra, J. H.; Gotlib, L.; Holloway, M. K.;
Lin, J.; Chen, I.-W.; Vastag, K.; Ostovic, D.; Anderson, P. S.;
Emini, E. A.; Huff, J. R. Proc. Natl. Acad. Sci. U.S.A. 1994,
91, 4096.
the related metabolic enzyme CYP2D6. Indinavir is
15
a very weak inhibitor ofthis P450 isoofrm,
while
the t-butylamide (1) exhibits micromolar inhibition
potency, and the analogous trifluoroethylamide affords
almost a further 5-fold increase in potency (0.52 mM).
Although the P450 inhibitory properties ofcompound
11 may afford slower clearance ofthis compound in
vivo, they also greatly increase the likelihood ofcom-
plicating drug–drug interactions ifthis compound were
employed as part ofa clinical regimen.
9. Schock, H. B.; Garsky, V. M.; Kuo, L. C. J. Biol. Chem.
1996, 271, 31957.
10. Data for compound 11. 1H NMR (CDCl3, 400MHz) 9.42 (t,
J=4.8 Hz, 1H), 8.90 (s, 1H), 8.52 (d, J=6.0 Hz, 1H), 7.37 (d,
J=5.6 Hz, 1H), 7.30 (m, 5H), 7.11 (t, J=8.4 Hz, 1H), 7.06 (d,
J=7.6 Hz, 1H), 6.78 (m, 2H), 6.67 (s, 1H), 5.91 (d, J=8.4 Hz,
1H), 5.15 (dd, J=4.0 Hz, 1H), 4.27 (m, 1H), 4.06 (d, J=10.4 Hz,
1H), 4.00 (dd, J=4.8 Hz, J=11.6 Hz, 1H), 3.76 (m, 3H), 3.46 (s,
1H), 3.37 (s, 1H), 3.11 (d, J=11.6 Hz, 1H), 2.85 (m, 4H), 2.70
(m, 4H), 2.44 (m, 2H), 2.10 (d, J=5.2 Hz, 1H), 1.90 (t, J=11.2
Hz, 1H), 1.57 (s, 8H); HPLC-MS (ES) 724.6 (M+1).
11. (a) Olsen, D. B.; Stahlhut, M. W.; Rutkowski, C. A.;
Schock, H. B.; vanOlden, A. L.; Kuo, L. C. J. Biol. Chem.
1999, 274, 23699. (b) Condra, J. H.; Holder, D. J.; Schleif,
W. A.; Blahy, O. M.; Danovich, R. M.; Gabyelski, L. J.;
Graham, D. J.; Laird, D.; Quintero, J. C.; Rhodes, A.; Rob-
bins, H. L.; Roth, E.; Shivaprakash, M.; Yang, T.; Chodake-
witz, J. A.; Deutsch, P. J.; Leavitt, R. Y.; Massari, F. E.;
Mellors, J. W.; Squires, K. E.; Steigbigel, R. T.; Teppler, H.;
Emini, E. A. J. Virol. 1996, 70, 8270. The most highly cross-
resistant viral isolates reported in ref11b were chosen for this
investigation without regard to their amino acid substitution
pattern.
12. The use ofanimals was done under the purview ofan
Institutional Animal Care and Use Committee, and all applic-
able regulations and laws pertaining to the use oflaboratory
animals were followed. For experimental methods for both in
vitro and in vivo pharmacokinetic investigations, see: Lin, J. H.;
Chiba, M.; Balani, S. K.; Chen, I.-W.; Kwei, G. Y.-S.; Vastag,
K. J.; Nishime, J. A. Drug Metab. Disp. 1996, 24, 1111.
13. Chiba, M.; Hensleigh, M.; Lin, J. H. Biochem. Pharmacol.
1997, 53, 1187.
Modification ofthe piperazine carboxamide substituent
on Indinavir and a related series ofcompounds can sig-
nificantly impact the inhibitory potency ofthe compounds
against the HIV protease enzyme. The trifluoro-
ethylamide substituent in compound 11 (Table 1) imparts
greater potency in halting the viral spread ofboth the
wild-type virus and a number ofPI-resistant variants of
HIV. This compound also exhibited more favorable phar-
macokinetic properties in vivo as compared to the analo-
gous t-butyalmide; however, this may be due to the
striking increase in inhibitory potency ofat least two
important P450 isoforms, CYP3A4 and CYP2D6.
References and Notes
1. (a) Kempf, D. J.; Molla, A.; Hsu, A. In Antiretroviral Ther-
apy; De Clercq, E., Ed.; ASM: Washington, DC, 2001; p 147. (b)
Vacca, J. P.; Condra, J. H. Drug Discov. Today 1997, 2, 261.
2. Boden, D.; Markowitz, M. Antimicrob. Agents Chemother.
1998, 42, 2775.
3. Cheng, Y.; Zhang, F.; Rano, T. A.; Lu, Z.; Schleif, W. A.;
Gabrylski, L.; Olsen, D. B.; Stahlhut, M.; Rutkowski, C. A.;
Lin, J. H.; Jin, L.; Emini, E. A.; Chapman, K. T.; Tata, J. R.
Bioorg. Med. Chem. Lett. 2002, 12, 2419.
4. Dorsey, B. D.; Levin, R. B.; McDaniel, S. L.; Vacca, J. P.;
Guare, J. P.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif,
W. A.; Quintero, J. C.; Lin, J. H.; Chen, I.-W.; Holloway,
M. K.; Fitzgerald, P. M. D.; Axel, M. G.; Ostovic, D.;
Anderson, P. S.; Huff, J. R. J. Med. Chem. 1994, 37, 3443.
5. Hennion, G. F.; Manzel, R. S. J. Am. Chem. Soc. 1960, 82,
4908.
14. Chiba, M.; Hensleigh, M.; Nishime, J. A.; Balani, S. K.;
Lin, J. H. Drug Metab. Disp. 1996, 24, 307.
15. von Moltke, L. L.; Greenblatt, D. J.; Duan, S. X.; Daily,
J. P.; Harmatz, J. S.; Shader, R. I. J. Pharm. Sci. 1998, 87,
1184.