426
T. Novák et al.
LETTER
(6) Selected data for the best catalyst 2d (prepared via
intermediates 4d and 5d): Yield 58%; [ ]D20 +28.9 (c 1,
CHCl3); mp 90-92 °C; 31P NMR (CDCl3) 35.03; 1H NMR
(CDCl3) 1.45-1.60 (2H, m, C( )H2), 1.60-1.75 (2H, m,
C( )H2), 2.20-2.42 (2H, m, C( )H2), 2.42-2.59 (2H, m,
C( )H2), 2.64-2.85 (4H, m, CH2-N-CH2), 3.34 (3H, s, OMe),
4.07 (1H, symm, C6-H), 4.16 (1H, d, J = 5.65, C6-H), 4.90
(1H, symm, C1-H), 5.42 (1H, s, C7-H), 7.17-7.82 (15H, m,
Ar).; 13C NMR (CDCl3) 19.3 (J = 2.5, Cβ), 26.1 (J = 12.0,
Cγ), 27.6 (J = 71.0, Cα), 52.9 (Cδ), 53.4 (CH2-N-CH2), 54.8
(MeO), 61.9 (C5), 68.3 (C6), 81.5 (C2), 96.5 (C1), 100.7 (C7),
125.5 (C2’), 127.8 (C3’), 128.4 (J = 12.0, C3’’’), 128.5 (C4’),
130.2 (J = 9.0, C2”), 131.5(C4”), 132.3 (J = 99.0, C1”), 136.6
(C1’); MS-FAB m/z, 696 (M+H); HRFAB, (M+H)found
696.3294, C38H51NO9P requires 696.3301.
=
(7) (a) The Michael addition was performed as follows: 1.44
mmol of chalcone (7) (or 3-fur-2-yl-1-phenyl-propanone (10))
and 0.3 mL (3.36 mmol) of 2-nitropropane (8) were dissolved
in 3 mL of anhydrous toluene, and then 0.1 mmol of crown
ether and 0.5 mmol of base were added. The mixture was
stirred under argon atmosphere. After completing the reaction,
a mixture of 7 mL of toluene and 10 mL of water was added.
The organic phase was processed in the usual manner. The
product (9 and 11) was purified on silica gel using hexane-
ethyl acetate (10:1) as eluant (preparative TLC). The
asymmetric induction, expressed in terms of the enantiomeric
excess (ee), was monitored by the optical rotation of the
products (9 and 11) compared with literature values4b and with
the data obtained by 1H NMR analysis using (+)-Eu(hfc)3 as a
chiral shift reagent. The specific rotations are [ ]D20+80.8
(c = 1, CH2Cl2) for(+)-(R)-9 and [ ]D20+62.8 (c = 1, CH2Cl2)
for (+)-(S)-11.
Figure 1 ORTEP diagram of 11.
The single crystal X-ray diffraction measurement of the
pure enantiomer7b of 11 showed that the absolute
configuration8 was S. The specific rotation of (+)-(S)-11 is
[ ]D20+62.8 (c = 1, CH2Cl2).
Acknowledgement
We are grateful for the OTKA-support (T029253). T. N. thanks the
grant from the József Varga Foundation.
References and Notes
(b) 1H NMR of 11 (CDCl3): 1.56 (3H, s), 1.66 (3H, s), 3.04
(1H, dd, J 3.0 and 17.0 Hz), 3.69 (1H, dd, J 10.7 and 17.1 Hz),
4.34 (1H, dd, J 2.9 and 10.7 Hz), 6.19-6.27 (2H, m), 7.26-7.89
(6H, m).
(1) (a) O’Donnell, M. I. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH: New York 1993, pp 389-411 and
references cited therein. (b) Latvala, A.; Stanchev, S.; Linden,
A.; Hesse, M. Tetrahedron: Asymmetry 1993, 4, 173. (c)
Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M.
Tetrahedron Lett. 1994, 35, 8233.
(8) Single crystal X-ray diffraction data of 11: C16H17N1O4, Fw.:
287.31, colorless prism, size: 0.35 0.25 0.15 mm,
monoclinic, space group P21, a = 5.839(1)Å, b = 11.350(1)Å,
c = 11.464(1)Å, = 92.11(1) , V = 759.2(2) Å3, from least-
(2) (a) Stoddart, J. F. Top. Stereochem. 1987, 17, 207; (b)
Miethchen, R.; Fehring, V. Synthesis 1998, 94.
squares fit of the setting angles of 50 (29.99
45.55 )
reflections, T = 295(2) K, Z = 2, F(000) = 304, Dx = 1.257
Mg/m3, = 0.748 mm-1, data collected on an automated 4-
circle instrument (Cu-K radiation, = 1.54180 Å) at 295(2)
(3) (a) Van Maarschalkerwaart, D. A. H.; Willard, N. P.; Pandit,
U. K. Tetrahedron 1992, 48, 8825. (b) Aoki, S.; Sasaki, S.;
Koga, K. Heterocycles 1992, 33, 493. (c) Kanakamma, P. P.;
Mani, N. S.; Maitra, U.; Nair, V. J. Chem. Soc., Perkin Trans
1 1995, 2339. (d) T ke, L.; Bakó, P.; Keserü, Gy. M.; Albert,
M.; Fenichel, L. Tetrahedron 1998, 54, 213 and references
cited therein.
(4) (a) Bakó, P.; Bajor, Z.; T ke, L. J. Chem. Soc., Perkin Trans
1 1999, 3651; (b) Bakó, P.; Czinege, E.; Bakó, T.; Czugler M.;
T ke L. Tetrahedron: Asymmetry 1999, 10, 4539. (c) Bakó,
P.; Novák, T.; Ludányi, K.; Pete, B.; T ke L.; Keglevich, Gy.
Tetrahedron: Asymmetry 1999, 10, 2373.
K, total of 3508 reflections (7.59
74.55 , of which 2931
unique [R(int) = 0.010, R( ) = 0.014]; 2666 reflections I >
2 (I). Empirical absorption correction was applied, initial
structure model by direct methods. Anisotropic full-matrix
least-squares refinement on F2 for all non-hydrogen atoms
yielded R1 = 0.0381 and wR2 = 0.1086 for 2666 [I > 2 (I)] and
R1 = 0.0425 and wR2 = 0.1117 for all (2931) intensity data.
(Goodness-of-fit = 1.065, absolute structure parameter of the
model: = 0.01(19), the max./mean shift/esd is 0.00 and 0.00,
max./min. residual electron density in the final d.e.d. map was
0.21 and -0.19 e.Å-3. CCDC number is 155923.
(5) Bakó, P.; T ke, L. J. Incl. Phenom. 1995, 23, 195.
Article Identifier:
1437-2096,E;2001,0,03,0424,0426,ftx,en;G25600ST.pdf
Synlett 2001, No. 3, 424–426 ISSN 0936-5214 © Thieme Stuttgart · New York