hydrophobic substrates in water using a novel and efficient
radical reaction system. Our strategy is based on the use of
a combination of a water-soluble radical initiator 2,2′-azobis-
[2-(2-imidazolin-2-yl)propane] (VA-061),6 water-soluble chain
carrier 1-ethylpiperidine hypophosphite (EPHP),7 and surf-
actant cetyltrimethylammonium bromide (CTAB).8
Table 1. Radical Cyclization Reaction Using Various Initiators
We presumed that a surfactant is essential to solubilize
the hydrophobic substrate in water, and with this in mind
we examined the radical cyclization of 1a using various
water-soluble azo-type initiators (Figure 1)6 in the presence
entry
initiator
time (h)
yield (trans:cis)a
1
2
3
4
5
6
7
8c
VA-061
VA-044
VA-080
VA-082
V-501
V-50
2
2.5
5
24
24
4
98% (55:45)
95% (50:50)
76% (50:50)
71% (50:50)
72% (51:49)
92% (51:49)
19% (57:43) [56%]b
50% (67:33) [46%]b
AlBN
Et3B
24
24
a The ratios were determined by 1H NMR. b Recovered starting material.
c Room temperature.
product was found to be low (Table 1, entry 8). On the other
hand, water-soluble initiators were found to be quite effective
in promoting the intramolecular cyclization of 1a. Remark-
ably, VA-061 was found to be the most suitable initiator
under these conditions (Table 1, entry 1), and thus the use
of VA-061 was explored further.
We next optimized for an expedient chain carrier for our
system containing VA-061 and CTAB (Table 2). Although
Figure 1. Water-Soluble Radical Initiators
Table 2. Effect of Various Chain Carrier
of water-soluble chain carrier (EPHP) and catalytic amount
of CTAB as the first chosen surfactant. The reaction did not
go to completion when the typical radical initiator AIBN
was used (Table 1, entry 7). While using Et3B,9 a known
radical initiator at low temperature, the yield of the desired
entry
chain carrier
none
time (h)
yield (trans:cis)a
(6) The water-soluble azo-type radical initiators used in our studies are
available from Wako Pure Chemical Industries, Ltd. Osaka, Japan. The
use of azo-type radical initiator (V-70) working at room temperature was
reported by us: Kita, Y.; Sano, A.; Yamaguchi, T.; Oka, M.; Gotanda, K.;
Matsugi, M. Tetrahedron Lett. 1997, 38, 3549. Kita, Y.; Gotanda, K.;
Murata, K.; Suemura, M.; Sano, A.; Yamaguchi, T.; Oka, M.; Matsugi, M.
Org. Process Res. DeV. 1998, 2, 250. Kita, Y.; Gotanda, K.; Ohira, C.;
Suemura, M.; Sano, A.; Matsugi, M. J. Org. Chem. 1999, 64, 6928 and
references therein.
1
2
3
24
2
6
no reaction
98% (55:45)
84% (78:22)
EPHP (10 equiv)
H3PO2 (10 equiv) +
NaHCO3 (10 equiv)
NaH2PO2 (10 equiv)
(TMS)3SiH (2 equiv)
4
5c
24
0.5
58% (78:22) [8%]b
94% (67:33)
(7) (a) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron
Lett. 1992, 33, 5709. (b) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C.
J. Org. Chem. 1993, 58, 6838. (c) Jang, D. O. Tetrahedron Lett. 1996, 37,
5367. (d) McCague, R.; Pritchard, R. G.; Stoodley, R. J.; Williamson, D.
S. Chem. Commun. 1998, 2691. (e) Tokuyama, H.; Yamashita, T.; Reding,
M. T.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791. (f)
Graham, S. R.; Murphy, J. A.; Coates, D. Tetrahedron Lett. 1999, 40, 2415.
(g) Graham, S. R.; Murphy, J. A.; Kennedy, A. R. J. Chem. Soc., Perkin
Trans. 1 1999, 3071. (h) Jang, D. O.; Song, S. H. Tetrahedron Lett. 2000,
41, 247. (i) Concepcion, G. M.; John, A. M.; Christopher, R. S. Tetrahedron
Lett. 2000, 41, 1833. (j) Yorimitsu, H.; Shinokubo, H.; Oshima, K. Chem.
Lett. 2000, 105.
(8) (a) Catalysis in Micellar and Macromolecular Systems; Fendler J.
H., Ed.; Academic Press: New York, 1998. (b) Tascioglu S. Tetrahedron
1996, 52, 11113. (c) Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y.
Tetrahedron Lett. 1998, 39, 4547. (d) Tohma, H.; Takizawa, S.; Watanabe,
H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. J. Org. Chem. 1999, 64, 3519.
(9) Nozaki, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991,
64, 403.
a The ratios were determined by 1H NMR. b Recovered starting material.
c VA-061 (0.5 equiv) was used.
the radical cyclization of 1a did not proceed at all in the
absence of chain carriers, we found that the addition of water-
soluble chain carriers afforded the expected cyclization
product in high yield within a short time. After screening a
series of chain carriers such as EPHP, tris(trimethylsilyl)-
silane [(TMS)3SiH],10 etc., we found that EPHP suits our
system the best. When (TMS)3SiH was used as the chain
(10) (a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188. (b) Baguley,
P. A.; Walton, J. C. Angew. Chem., Int. Ed. Engl. 1998, 37, 3072.
1158
Org. Lett., Vol. 3, No. 8, 2001