J. Girniene et al. / Tetrahedron Letters 42 (2001) 2977–2980
2979
References
DMSO) 61.4 (C-5), 74.8, 87.4, 89.9, 92.1, 188.9 (CS);
ISMS m/z 192 (m+H)+.
1. (a) McGuigan, C.; Yarnold, C. J.; Jones, G.; Velazquez,
S.; Barucki, H.; Brancale, A.; Andrei, G.; Snoeck, R.; De
Clercq, E.; Balzarini, J. J. Med. Chem. 1999, 42, 4479–
4484; (b) Brancale, A.; McGuigan, C.; Andrei, G.;
Snoeck, R.; De Clercq, E.; Balzarini, J. Bioorg. Med.
Chem. Lett. 2000, 10, 1215–1217.
2. (a) Harwood, E. A.; Hopkins, P. B.; Sigurdsson, S. T. J.
Org. Chem. 2000, 65, 2959–2964; (b) Kotera, M.; Rou-
pioz, Y.; Defrancq, E.; Bourdat, A.-G.; Garcia, J.; Cou-
lombeau, C.; Lhomme, J. Chem. Eur. J. 2000, 6,
4163–4169.
3. (a) Ro¨sler, A.; Pfleiderer, W. Helv. Chim. Acta 1997, 80,
1869–1881; (b) Tre´visiol, E.; Defrancq, E.; Lhomme, J.;
Laayoun, A.; Cros, P. Eur. J. Org. Chem. 2000, 211–217;
(c) Jourdan, F.; Ladure´e, D.; Robba, M. J. Heterocycl.
Chem. 1994, 31, 305–312; (d) Wang, Z.; Rizzo, C. J. Org.
Lett. 2000, 2, 227–230.
4. (a) Guckian, K. M.; Morales, J. C.; Kool, E. T. J. Org.
Chem. 1998, 63, 9652–9656; (b) Kool, E. T.; Morales, J.
C.; Guckian, K. M. Angew. Chem., Int. Ed. 2000, 39,
990–1009.
5. (a) Jungmann, O.; Pfleiderer, W. Tetrahedron Lett. 1996,
37, 8355–8358; (b) Sugimura, H.; Osumi, K.; Kodaka, Y.;
Sujino, K. J. Org. Chem. 1994, 59, 7653–7660.
6. (a) Gosselin, G.; Bergogne, M.-C.; De Rudder, J.; De
Clercq, E.; Imbach, J.-L. J. Med. Chem. 1986, 29, 203–
213; (b) Mourier, N. S.; Eleuteri, A.; Hurwitz, S. J.;
Tharnish, P. M.; Shinazi, R. F. Bioorg. Med. Chem. 1999,
7, 2759–2766.
7. (a) Sauter, F.; Fro¨hlich, J.; Blasl, K.; Gewald, K. Hetero-
cycles 1995, 40, 851–866; (b) Preshad, M.; Chen, L.;
Repic, O.; Blacklock, T. J. Synth. Commun. 1998, 28,
2125–2129.
8. Leoni, O.; Bernardi, R.; Gueyrard, D.; Rollin, P.;
Palmieri, S. Tetrahedron: Asymmetry 1999, 10, 4775–
4780.
9. (a) Gueyrard, D.; Grumel, V.; Leoni, O.; Palmieri, S.;
Rollin, P. Heterocycles 2000, 52, 827–843; (b) Gueyrard,
D.; Leoni, O.; Palmieri, S.; Rollin, P. Tetrahedron: Asym-
metry 2001, 12, 337–340.
Compound 1a (0.657 g, 3.42 mmol) was dissolved in
DMF and cooled under argon in an ice–water bath. NaH
(0.45 g, 60%, 11.3 mmol) was added. After a few minutes,
benzyl bromide (1.34 mL, 11.3 mmol) was added drop-
wise over a 10 min period. The mixture was left overnight
at room temperature, then diluted with water and
extracted with ethyl acetate. The organic phase was
washed twice with water, brine and was then dried with
MgSO4. After evaporation, the residue was purified on
silica gel to furnish the per-benzylated oxazoline 2a (0.695
g, 1.5 mmol). [h]D20 −71 (c 1.16, CHCl3); 1H NMR (250
MHz, CDCl3) 3.20 (dd, 1H, J5a,5b=10 Hz, J5a,4=7 Hz,
H-5a), 3.40 (dd, 1H, J5b,4=5.5 Hz, H-5b), 4.04 (m, 1H,
H-3), 4.19 (s, 2H, CH2Ph), 4.23 (m, 1H, H-4), 4.36 (d,
1H, J=12.1 Hz, CH2Ph), 4.43 (d, 1H, J=12.1 Hz,
CH2Ph), 4.49 (d, 1H, J=12.1 Hz, CH2Ph), 4.55 (d, 1H,
J=12.1 Hz, CH2Ph), 4.85 (dd, 1H, J1,2=6 Hz, J2,3=1
Hz, H-2), 6.01 (d, 1H, J1,2=6 Hz, H-1), 7.10–7.30 (m,
15H, H-arom); 13C NMR (63 MHz, CDCl3) 36.1 (CH2S-),
69.4 (CH2), 71.6 (CH2), 73.1 (C-5), 81.9 (C-3), 85.4 (C-4),
88.1 (C-2), 100.7 (C-1), 126.4, 126.7, 127.0, 127.5, 127.7,
127.8, 128.2, 128.3, 128.4, 128.9, 136.4, 136.9, 137.5,
137.8, 138.8, 169.2; ISMS m/z 462 (m+H)+.
14. Typical procedure for condensation: Compound 2a (0.2 g;
0.43 mmol) was dissolved in dry ethanol in the presence
,
of 3 A molecular sieves. Anthranilic acid (0.071 g, 0.52
mmol) was added and the solution heated under reflux
for 24 h. The mixture was then evaporated, extracted
with CH2Cl2, washed twice with saturated NaHCO3,
dried over MgSO4 and purified by silica gel flash chro-
matography. The
D-arabino-quinazolinone derivative 3a
(0.155 g, 0.34 mmol) was isolated in 79% yield. [h]2D0 −191
(c 0.59, CHCl3); 1H NMR (250 MHz, CDCl3) 3.34 (m,
2H, H-5), 4.16 (d, 1H, J=12.5 Hz, CH2Ph), 4.22 (d, 1H,
J=12.5 Hz, CH2Ph), 4.42 (m, 1H, H-4), 4.57 (d, 1H,
J=12 Hz, CH2Ph), 4.63 (d, 1H, J=12 Hz, CH2Ph), 5.22
(d, 1H, J1,2=6 Hz, H-3), 6.57 (d, 1H, J1,2=6 Hz, H-1),
7.01–7.04 (m, 2H, H-arom), 7.17–7.20 (m, 3H, H-arom),
7.31–7.37 (m, 6H, H-arom), 7.48 (d, 1H, J=7.2 Hz,
H-quinazolinone), 7.66 (m, 1H, H-quinazolinone), 8.22
(m, 1H, H-quinazolinone); 13C NMR (63 MHz, CDCl3)
69.1, 72.6, 73.5, 83.6, 85.4, 86.0, 87.7, 119.0 (C-1), 125.0,
126.4, 127.3, 127.9, 128.0, 128.2, 128.4, 128.5, 128.8,
135.2, 136.5, 137.2, 149.2 (CꢀN), 154.7 (CO); ISMS m/z
457 (m+H)+.
10. Bromund, W.; Herbst, R. M. J. Org. Chem. 1945, 267–
276.
11. Davidson, R. M.; Byrd, G. D.; White, E.; Margolis, S.
A.; Coxon, B. Magn. Reson. Chem. 1986, 24, 929–937.
12. (a) Grouiller, A.; Mackenzie, G.; Najib, B.; Shaw, G.;
Ewing, D. J. Chem. Soc., Chem. Commun. 1988, 671–672;
(b) Lichtenthaler, F. W.; Klotz, J.; Flath, F.-J. Liebigs
Ann. Chem. 1995, 2069–2080.
15. Schinadzi, R. F.; Chen, M. S.; Prusoff, W. H. J. Med.
Chem. 1979, 22, 1273–1277.
16. The
D-arabino-quinazolinone derivative 3a was dissolved
13. Typical procedure for OZT preparation and benzylation:
in ethanol then NaOH 5% was added and the solution
was stirred at room temperature for 7 days. The solution
was evaporated, extracted with ethyl acetate, washed with
water until neutral and then dried over MgSO4. The
quinazolinedione 4a was isolated in 67% yield. [h]2D0 −85
(c 0.65, CHCl3); 1H NMR (250 MHz, CDCl3) 3.53 (s,
1H, OH), 3.74 (dd, 1H, J5a,5b=10.4 Hz, J4,5a=3.0 Hz,
H-5a), 3.89 (dd, 1H, J4,5b=8.0 Hz, H-5b), 4.12 (ddd, 1H,
D
-Arabinose (1 g, 6.67 mmol) and KSCN (1.3 g, 13.4
mmol) were dissolved in cold water and then 37% HCl
(1.1 mL) was added. The solution was kept at room
temperature for 2 hours then at 55°C overnight. The
solution was evaporated and purified over silica gel with
ethyl acetate as eluent. The
D-arabino-OZT derivative 1a
(1.1 g, 5.75 mmol) was isolated in 86% yield. [h]2D0 −52 (c
1.07, CH3OH); 1H NMR (250 MHz, DMSO) 3.15–3.35
(m, 2H, H-5), 3.84 (t, 1H, J=6.0 Hz, H-3), 4.23 (m, 1H,
H-4), 4.94 (t, 1H, J=5.5 Hz, OH), 5.03 (d, 1H, J1,2=5.5
Hz, H-2), 5.69 (d, 1H, J=4.0 Hz, OH), 5.78 (d, 1H,
J3,4=7.5 Hz, J4,5b=8.0 Hz, J4,5a=3.0 Hz, H-4), 4.29 (dd,
1H, J2,3=5.5 Hz, J3,4=7.5 Hz, H-3), 4.52–4.72 (m, 4H,
H-2, CH2Ph), 4.85 (d, 1H, J=11.5 Hz, CH2Ph), 6.78 (d,
1H, J1,2=8.0 Hz, H-1), 6.93 (d, 1H, Ja,b=8.0 Hz, Ha),
7.12 (t, 1H, Jc,b=Jc,d=8.0 Hz, Hc), 7.24–7.47 (m, 10H,
J
1,2=5.5 Hz, H-1), 10.8 (s, 1H, NH); 13C NMR (63 MHz,