Diethylzinc-Mediated Allylation of Carbonyl Compounds
vol. 2; d) J. Tsuji, Palladium Reagents and Catalysis, New Per-
spectives for the 21st Century, Wiley, Chichester, 2004.
G. P. Howell, A. J. Minnaard, B. L. Feringa, Org. Biomol.
Chem. 2006, 4, 1278–1283; i) M. Kimura, T. Tamaki, M. Nak-
ata, K. Tohyama, Y. Tamaru, Angew. Chem. Int. Ed. 2008, 47,
5803–5805; j) O. Onomura, N. Fujimura, T. Oda, Y. Matsu-
mura, Y. Demizu, Heterocycles 2008, 76, 177–182; k) T.-Z.
Zhang, L.-X. Daia, X.-L. Hou, Tetrahedron: Asymmetry 2007,
18, 251–259.
The possibility that this umpolung reaction proceeds via a
more complex zinc–palladium aggregated species was also con-
sidered.
[2]
[3]
[4]
a) B. M. Trost, Acc. Chem. Res. 1980, 13, 385–393; b) S. A.
Godleski in Nucleophiles with Allyl–Metal Complexes (Eds.:
B. M. Trost, I. Fleming), Pergamon, New York, 1991, vol. 4,
ch. 3.3; c) J. Tsuji, T. Mandai, Angew. Chem. Int. Ed. Engl.
1995, 34, 2589–2612; d) B. M. Trost, D. L. V. Vranken, Chem.
Rev. 1996, 96, 395–422.
For reviews, see: a) Y. Tamaru, J. Organomet. Chem. 1999, 576,
215–231; b) K. J. Szabó, Chem. Eur. J. 2004, 10, 5268–5275; c)
Y. Tamaru, Eur. J. Org. Chem. 2005, 2647–2656; d) N. T. Patil,
Y. Yamamoto, Jordan J. Chem. 2006, 1, 13–23; e) G. Zanoni,
A. Pontiroli, A. Marchetti, G. Vidari, Eur. J. Org. Chem. 2007,
3599–3611.
The nucleophilic reactivity of allyl–palladium species was ini-
tially observed in stoichiometric reactions of (aryl)(η1-allyl)PdII
or bis(allyl)PdII complexes with various electrophiles (HCl, Br2,
NBS, CCl4, or CHCl3), see: a) P. W. Jolly, Angew. Chem. Int.
Ed. Engl. 1985, 24, 283–295; b) H. Kurosawa, A. Urabe, Chem.
Lett. 1985, 1839–1840; c) H. Kurosawa, A. Urabe, K. Miki, N.
Kasai, Organometallics 1986, 5, 2002–2008; d) H. Kurosawa, S.
Ogoshi, Bull. Chem. Soc. Jpn. 1998, 71, 973–984.
a) H. Nakamura, N. Asao, Y. Yamamoto, J. Chem. Soc., Chem.
Commun. 1995, 1273–1274; b) H. Nakamura, H. Iwama, Y.
Yamamoto, J. Am. Chem. Soc. 1996, 118, 6641–6647; c) R. A.
Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003,
125, 14133–14139.
F. Pichierri, Y. Yamamoto, J. Org. Chem. 2007, 72, 861–869.
Calculations showed that the transfer of formaldehyde to a π-
allyl group was a thermodynamically favored process.
a) N. Solin, J. Kjellgren, K. J. Szabó, Angew. Chem. Int. Ed.
2003, 42, 3656–3658; b) N. Solin, J. Kjellgren, K. J. Szabó, J.
Am. Chem. Soc. 2004, 126, 7026–7033; c) O. A. Wallner, K. J.
Szabó, Org. Lett. 2004, 6, 1829–1831; d) N. Solin, O. A.
Wallner, K. J. Szabó, Org. Lett. 2005, 7, 689–691; e) O. A.
Wallner, K. J. Szabó, Chem. Eur. J. 2006, 12, 6976–6983; f) N.
Selander, S. Sebelius, C. Estay, K. J. Szabó, Eur. J. Org. Chem.
2006, 4085–4087; g) J. Aydin, K. S. Kumar, M. J. Sayah, O. A.
Wallner, K. J. Szabó, J. Org. Chem. 2007, 72, 4689–4697; h) R.
Johansson, O. F. Wendt, Dalton Trans. 2007, 488–492; i) M.
Mazzeo, M. Lamberti, A. Massa, A. Scettri, C. Pellecchia, J. C.
Peters, Organometallics 2008, 27, 5741–5743; j) M. E. Cucciol-
ito, A. Vitagliano, Organometallics 2008, 27, 6360–6363.
For a computational study on the structure and reactivity of
(η1-allyl)Pd complexes, see: M. García-Iglesias, E. Buñuel, D. J.
Cárdenas, Organometallics 2006, 25, 3611–3618.
[13]
[14]
a) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl.
1997, 36, 2162–2187; b) D. Bourissou, O. Guerret, F. P. Gabbaï,
G. Bertrand, Chem. Rev. 2000, 100, 39–92; c) W. A. Herrmann,
Angew. Chem. Int. Ed. 2002, 41, 1290–1309; d) C. M. Crudden,
D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247–2273; e) N. M.
Scott, S. P. Nolan, Eur. J. Inorg. Chem. 2005, 1815–1828; f) L.
Cavallo, A. Correa, C. Costabile, H. Jacobsen, J. Organomet.
Chem. 2005, 690, 5407–5413; g) R. H. Crabtree, J. Organomet.
Chem. 2005, 690, 5451–5457; h) N-Heterocyclic Carbenes in
Synthesis (Ed.: S. P. Nolan), Wiley-VCH, Weinheim, 2006; i) F.
Glorius (Ed.), Topics in Organometallic Chemistry Vol. 21: N-
Heterocyclic Carbenes in Transition Metal Catalysis, Springer,
Berlin, 2007; j) S. Díez-Gonzáles, S. P. Nolan, Coord. Chem.
Rev. 2007, 251, 874–883; k) A. T. Normand, K. J. Cavell, Eur.
J. Inorg. Chem. 2008, 2781–2800; l) F. E. Hahn, M. C. Jahnke,
Angew. Chem. Int. Ed. 2008, 47, 3122–3172.
a) Y. Sato, T. Yoshino, M. Mori, Org. Lett. 2003, 5, 31–33;
b) L. G. Bonnet, R. E. Douthwaite, Organometallics 2003, 22,
4187–4189; c) J. W. Faller, N. Sarantopoulos, Organometallics
2004, 23, 2179–2185; d) Y. Sato, T. Yoshino, M. Mori, J. Or-
ganomet. Chem. 2005, 690, 5753–5758; e) R. Hodgson, R. E.
Douthwaite, J. Organomet. Chem. 2005, 690, 5822–5831; f) A.
Flahaut, S. Roland, P. Mangeney, J. Organomet. Chem. 2006,
691, 3498–3508; g) S.-J. Li, J.-H. Zhong, Y.-G. Wang, Tetrahe-
dron: Asymmetry 2006, 17, 1650–1654; h) A. Ros, D. Monge,
M. Alcarazo, E. Álvarez, J. M. Lassaletta, R. Fernández, Orga-
nometallics 2006, 25, 6039–6046; i) S. J. Roseblade, A. Ros, D.
Monge, M. Alcarazo, E. Álvarez, J. M. Lassaletta, R.
Fernández, Organometallics 2007, 26, 2570–2578; j) A. Fla-
haut, S. Roland, P. Mangeney, Tetrahedron: Asymmetry 2007,
18, 229–236; k) M. Merzouk, T. Moore, N. A. Williams, Tetra-
hedron Lett. 2007, 48, 8914–8917; l) A. Flahaut, S. Roland, P.
Mangeney, J. Organomet. Chem. 2007, 692, 5754–5762; m) F.
Visentin, A. Togni, Organometallics 2007, 26, 3746–3754; n) N.
Toselli, D. Martin, G. Buono, Org. Lett. 2008, 10, 1453–1456;
o) S. Roland, W. Cotet, P. Mangeney, Eur. J. Inorg. Chem. 2009,
1796–1805.
This was ascribed to the strong σ-donor effect of the NHC.
The electrophilic properties of the allyl fragment can be en-
hanced by associating the NHC ligand with a π-accepting li-
gand such as a phosphane, see ref.[15e,15l,15o]
D. R. Jensen, M. S. Sigman, Org. Lett. 2003, 5, 63–65. This
reaction was used for the synthesis of dimeric [(NHC)PdCl2]2
complexes.
The low catalytic activity was attributed to a slow transmet-
alation step.
N. T. Barczak, R. E. Grote, E. R. Jarvo, Organometallics 2007,
26, 4863–4865.
M. B. Shaghafi, B. L. Kohn, E. R. Jarvo, Org. Lett. 2008, 10,
4743–4746.
a) T. Zhang, M. Shi, M. Zhao, Tetrahedron 2008, 64, 2412–
2418; b) After the first submission of our work, the use of
complexes 6 in the diethylzinc-mediated reaction was also re-
ported, see: W. Wang, T. Zhang, M. Shi, Organometallics 2009,
28, 2640–2642.
W. A. Herrmann, V. P. W. Böhm, C. W. K. Gstöttmayr, M.
Grosche, C.-P. Reisinger, T. Weskamp, J. Organomet. Chem.
2001, 617–618, 616–628.
D. Enders, H. Gielen, G. Raabe, J. Runsink, J. H. Teles, Chem.
Ber. 1996, 129, 1483–1488.
[5]
[15]
[6]
[7]
[8]
[9]
Attempts to isolate these intermediates were unsuccessful, and
their direct reaction with aldehydes could not be examined. It
was suggested that the allyl fragment rapidly reacts with trace
amounts of water to form propene, see ref.[7a]
[16]
[17]
1
[10]
[11]
More recently, a P–C–P (η -allyl)Pd complex was isolated, and
the allyl fragment was shown to react with CO2, see ref.[7h]
In the case of S–C–S palladium “pincer” complexes, Le Floch
and co-workers found by DFT calculations that, in the al-
lylation reaction of aldehydes with allylstannes, a Lewis acid
based pathway should be more favorable than the pathway in-
volving nucleophilic η1-allyl complexes, see: O. Piechaczyk, T.
Cantat, N. Mézailles, P. Le Floch, J. Org. Chem. 2007, 72,
4228–4237.
[18]
[19]
[20]
[21]
[12]
a) K. Yasui, Y. Goto, T. Yajima, Y. Taniseki, K. Fugami, A.
Tanaka, Y. Tamaru, Tetrahedron Lett. 1993, 34, 7619–7622; b)
J. Clayden, M. Julia, J. Chem. Soc., Chem. Commun. 1994,
1905–1906; c) M. Kimura, M. Shimizu, K. Shibata, M. Tazoe,
Y. Tamaru, Angew. Chem. Int. Ed. 2003, 42, 3392–3395; d) G.
Zanoni, S. Gladiali, A. Marchetti, P. Piccinini, I. Tredici, G.
Vidari, Angew. Chem. Int. Ed. 2004, 43, 846–849; e) M. Shim-
izu, M. Kimura, T. Watanabe, Y. Tamaru, Org. Lett. 2005, 7,
637–640; f) M. Kimura, M. Shimizu, S. Tanaka, Y. Tamaru,
Tetrahedron 2005, 61, 3709–3718; g) S.-F. Zhu, Y. Yang, L.-X.
Wang, B. Liu, Q.-L. Zhou, Org. Lett. 2005, 7, 2333–2335; h)
[22]
[23]
Eur. J. Inorg. Chem. 2009, 5422–5432
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5431