J. Mulzer et al. / Tetrahedron Letters 42 (2001) 2961–2964
2963
Figure 1. Transition states for the radical annulations as derived from the crystal structures of the cyclization products 11 and 14.
The annulation to the butenolide exclusively generates
the cis-fused system, however, the 12-radical, as in all
the cases reported so far,4 lacks facial selectivity, due to
rapid rotation around the 11,12-axis. To inhibit such a
rotation the incorporation of the 11,12-bond into a
cyclic template appeared appropriate, following an ear-
lier precedence by RajanBabu.6 Thus, in our synthesis
of ent-2 the known benzylidene acetal (6)7 was trans-
formed into an epimeric mixture of the acetylides 7a/b.
To rectify the configuration of the C-4-carbinol the
mixture was oxidized to the ketone and then reduced
with Alpine-borane8 to give either 7a or 7b with high
diastereocontrol (Scheme 2). Pure alcohol 7a was
hydrogenated and cyclized to the butenolide 8, which
was converted into thiocarbonate 9 and then into free
radical 10.9 Twofold cis-annulation occurred to give the
ent-12-epi-Corey lactone derivative 1110,11 as a single
stereoisomer in high yield. By routine functional group
manipulation 11 was transformed into 12, i.e. the enan-
tiomer of Rockach’s intermediate in his synthesis of 2.3b
Analogously thiocarbonate 13, obtained from 7b, was
converted into 14,10,11 again as a single stereoisomer
(Scheme 2), which may serve as an intermediate in a
synthesis of 11-epi-PGF2a (15).
II, L. J.; Hoover, R. L.; Badr, K. F. J. Clin. Invest. 1992,
90, 136.
3. (a) Lai, S.; Lee, D.; U, J. S.; Cha, J. K. J. Org. Chem.
1999, 64, 7213; (b) Hwang, S. W.; Adiyaman, M.;
Khanapure, S. P.; Rokach, J. Tetrahedron Lett. 1996, 37,
779; (c) Larock, R. C.; Lee, N. H. J. Am. Chem. Soc.
1991, 113, 7815; (d) Brown, E. D. Ger. Offen. DE 2, 360,
893, 12 June 1973; Chem. Abstr. 1974, 81, 120096e; (e)
Brewster, D.; Meyers, M.; Ormerod, J.; Otter, P.; Smith,
A. C. B.; Spinner, M. E.; Turner, S. J. Chem. Soc., Perkin
Trans. 1 1973, 2796.
4. (a) Hwang, S. W.; Adiyaman, M.; Khanapure, S.; Schio,
L.; Rockach, J. J. Am. Chem. Soc. 1994, 116, 10829; (b)
Rockach, J.; Khanapure, S. P.; Hwang, S.-W.; Adiya-
man, M.; Schio, L.; FitzGerald, G. A. Synthesis 1998,
569; (c) Rockach, J.; Khanapure, S. P.; Hwang, S.-W.;
Adiyaman, M.; Lawson, J. A.; FitzGerald, G. A.
Prostaglandins 1997, 54, 823; (d) For an earlier example,
see: Corey, E. J.; Shih, Ch.; Shih, N. Y.; Shimoji, K.
Tetrahedron Lett. 1984, 25, 5012; (e) Corey, E. J.; Shih,
C.; Shimoji, K. J. Am. Chem. Soc. 1984, 106, 6425.
5. Mulzer, J.; Kermanchahi, A. K.; Buschmann, J.; Luger,
P. Liebigs Ann. Chem. 1994, 531.
6. RajanBabu, T. V. J. Org. Chem. 1988, 53, 4522.
7. Nicolaou, K. C.; Nugiel, D. A.; Couladouros, E.; Hwang,
C.-K. Tetrahedron 1990, 46, 4517.
8. Midland, M. M.; Zderic, S. A. J. Am. Chem. Soc. 1982,
104, 525.
The transition states of the respective free radical
cyclizations may be rationalized in terms of the crystal
structures of 11 and 14, respectively (Fig. 1). This figure
clearly indicates the stereochemical course of the addi-
tion of an endocyclic cyclohexyl type radical to the
butenolide acceptor double bond. Both the cis-annula-
tion to the six-membered acetal and the cis-annulation
to the butenolide guarantee the stereochemical outcome
of the cyclization. In conclusion we have described a
fully stereocontrolled 8,12-free radical cyclization in the
isoprostane series and demonstrated its utility for the
synthesis of ent-2.
9. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc.,
Perkin Trans. 1 1975, 1574.
1
10. 11: mp 154°C. H NMR (250 MHz, CDCl3) l 7.34–7.27
(m, 5H), 5.33 (s, 1H), 5.11 (t, J=6.9 Hz, 1H), 4.36–4.33
(m, 1H), 4.26–4.23 (m, 2H), 3.46 (dd, J=18 Hz, J=3.3
Hz, 1 H), 3.21–3.08 (m, 1H), 2.64 (dd, J=18.5 Hz,
J=11.9 Hz, 1H), 2.38 (d, J=15.8. Hz, 1H), 1.98–1.87 (m,
2H). 13C NMR (67.9 MHz, CDCl3) l 177.30, 137.48,
128.99, 128.26, 126.25, 101.25, 85.37, 80.02, 65.92, 39.75,
39.73, 39.69, 31.29 ppm. MS (ESI): m/z 261.1 (M+).
[h]2D0=−98.7 (c 2.42, CHCl3). Anal. calcd for C15H16O4:
C, 69.22; H, 6.20. Found: C, 68.95; H, 6.31. 14: mp
149°C. 1H NMR (250 MHz, CDCl3) l 7.39–7.26 (m, 5H),
5.38 (s, 1H), 5.04 (m, 1H), 4.40–4.37 (m, 1H), 4.19–4.13
(m, 1H), 4.03 (d, J=12 Hz, 1H), 3.33–3.23 (m, 1H), 2.75
(dd, J=18 Hz, J=9 Hz, 1H), 2.80–2.28 (m, 2H), 2.12–
2.02 (m, 1H), 1.67–1.61 (m, 1H): 13C NMR (67.9 MHz,
CDCl3) l 176.31, 137.90, 128.90, 128.17, 125.76, 100.50,
85.17, 79.72, 65.44, 44.28, 40.37, 38.78, 33.60 ppm. MS
(ESI) m/z 261.1 (M+). [h]D20=−88.6 (c 2.11, CHCl3). Anal.
References
1. Morrow, J. D.; Minton, T. A.; Mukundan, C. R.;
Campell, M. D.; Zackert, W. E.; Daniel, V. C.; Badr, K.
F.; Blair, I. A.; Roberts, II, L. J. J. Biol. Chem. 1994, 269,
4317 and earlier work.
2. (a) Morrow, J. D.; Hill, K. E.; Burk, R. F.; Mammour,
T. M.; Badr, K. F.; Roberts, II, L. J. Proc. Natl. Acad.
Sci. USA 1990, 87, 9383; (b) Takahashi, K.; Mammour,
T. M.; Fukunaga, M.; Ebert, J.; Morrow, J. D.; Roberts,