monitored by 1H NMR spectroscopy. Yields of the cleavage (10
and 1% catalyst) of at least three independent experiments were
determined by H NMR spectroscopy using nitromethane as
10 W. O. Koch and H.-J. Krüger, Angew. Chem., 1995, 107, 2929;
W. O. Koch and H.-J. Krüger, Angew. Chem., Int. Ed. Engl., 1995,
34, 2671.
1
11 Y.-M. Chiou and L. Que, Jr., Inorg. Chem., 1995, 34, 3577;
T. Ogihara, S. Hikichi, M. Akita and Y. Moro-oka, Inorg. Chem.,
1998, 37, 2614; T. Funabiki, T. Yamazaki, A. Fukui, T. Tanaka and
S. Yoshida, Angew. Chem., 1999, 110, 527; T. Funabiki, T.
Yamazaki, A. Fukui, T. Tanaka and S. Yoshida, Angew. Chem.,
Int. Ed. Engl., 1999, 37, 513; R. Viswanathan and M. Palaniandavar,
J. Chem. Soc., Dalton Trans., 1995, 1259; H. Weiner and R. G.
Finke, J. Am. Chem. Soc., 1999, 121, 9931; P. Mialane, J.-J. Girerd,
J. Guilhem and L. Tchertanov, Inorg. Chim. Acta, 2000, 299,
39.
12 P. Mialane, L. Tchertanov, F. Banse, J. Sainton and J.-J. Girerd,
Inorg. Chem., 2000, 39, 2440.
13 M. Pascaly, M. Duda, A. Rompel, B. H. Sift, W. Meyer-Klaucke
and B. Krebs, Inorg. Chim. Acta, 1999, 291, 289.
14 M. Pascaly, Ç. Nazikkol, F. Schweppe, A. Wiedemann, K.
Zurlinden and B. Krebs, Z. Anorg. Allg. Chem., 2000, 626, 50.
15 Y. Nishida, H. Shimo and S. Kida, J. Chem. Soc., Chem. Commun.,
1994, 1611.
16 R. Viswanathan, M. Palaniandavar, T. Balasubramanian and
T. P. Mutiah, Inorg. Chem., 1999, 37, 2943.
17 T. Funabiki, A. Mizoguchi, T. Sugimoto, S. Tada, M. Tsuji,
H. Sakamoto and S. Yoshida, J. Am. Chem. Soc., 1996, 109, 2921;
T. Funabiki, M. Ishikawa, Y. Nagai, J. Yorita and S. Yoshida,
J. Chem. Soc., Chem. Commun., 1994, 1951; T. Funabiki, I. Yoneda,
M. Ishikawa, M. Ujiie, Y. Nagai and S. Yoshida, J. Chem. Soc.,
Chem. Commun., 1994, 1453.
18 M. G. Weller and U. Weser, J. Am. Chem. Soc., 1992, 104, 3752;
M. G. Weller and U. Weser, Inorg. Chim. Acta, 1995, 107, 243.
19 M. Duda, M. Pascaly and B. Krebs, Chem. Commun., 1997,
935.
standard (singlet at δ 4.3; 0.2 mmol).
Identification of the dioxygenated products
2 equivalents piperidine were added with stirring to a reaction
mixture (10 mL methanol) consisting of Fe(ClO4)3ؒ9H2O, the
tripodal ligand, and catechol (0.2 mmol). After all catechol
had reacted (monitored by TLC) the solvent was evaporated
under reduced pressure at ambient temperature. The cleav-
age products were separated from this residue by column
chromatography (SiO2; H2dbc, CH2Cl2–CHCl3 1 : 2; all other
substrates, methanol). After evaporation of the solvent the
products were dried in vacuo and identified by 1H NMR or mass
spectrometry. 3,5-Di-tert-butyl-1-oxacyclohepta-3,5-diene-2,7-
dione I: 1H NMR (300 MHz, CDCl3) δ 1.15 (s, 9 H, C(CH3)3),
1.27 (s, 9 H, C(CH3)3), 6.12 (m, 1 H, CH) and 6.42 (m, 1 H,
CH). 2-Methoxyhexa-2,4-dienedioic acid monomethyl ester II,
1
III: H NMR (300 MHz, DMSO-d6) δ 3.68 (s, 3H, CO2CH3),
3.81 (s, 3H, OCH3), 5.74 (d, 1H, CH), 7.10 (t, 1H, CH) and 7.74
(d, 1H, CH). (2-tert-Butyl-5-oxo-2,5-dihydrofuran-2-yl)acetic
acid methyl ester IV (R2 = tert-butyl): 1H NMR (300 MHz,
CDCl3) δ 1.01 (s, 9 H, C(CH3)3), 2.95 (m, 2 H, CH2CO2), 3.64
(s, 3 H, OCH3), 6.09 (d, 1 H, CH) and 7.51 (d, 1 H, CH).
(2-Methyl-5-oxo-2,5-dihydrofuran-2-yl)acetic acid methyl ester
1
IV (R2 = methyl): H NMR (300 MHz, CDCl3) δ 2.01 (s, 3 H,
CH3), 2.91 (m, 2 H, CH2CO2), 3.66 (s, 3 H, OCH3), 6.03 (d, 1 H,
CH) and 7.65 (d, 1 H, CH). (3-tert-Butyl-5-oxo-2,5-dihydro-
furan-2-yl)acetic acid methyl ester V (R2 = tert-butyl) 1H NMR
(300 MHz, CDCl3) δ 1.26 (s, 9 H, C(CH3)3), 2.55 (dd, 1 H, CH2),
3.05 (dd, 1 H, CH2), 3.71 (s, 3 H, OCH3), 5.40 (m, 1 H, OCH)
and 5.85 (d, 1 H, CH). (3-Methyl-5-oxo-2,5-dihydrofuran-2-
yl)acetic acid methyl ester V (R2 = methyl): 1H NMR (300 MHz,
CDCl3) δ 2.26 (s, 3 H, CH3), 2.61 (dd, 1 H, CH2), 2.85 (dd, 1 H,
CH2), 3.71 (s, 3 H, OCH3), 5.22 (m, 1 H, OCH) and 5.84 (m,
1 H, CH). (5-Oxo-2,5-dihydrofuran-2-yl)acetic acid methyl
ester VI: MS m/z, 157 [MH]ϩ.
20 F. Schweppe, H. Sirges, M. Pascaly, M. Duda, Ç. Nazikkol,
W. Steinforth and B. Krebs, Peroxide Chemistry. Mechanistic and
Preparative Aspects of Oxygen Transfer, ed. W. Adam, Wiley-VCH,
Weinheim, 2000, p. 232.
21 M. Pascaly, F. Schweppe and B. Krebs, J. Inorg. Biochem., 1999, 74,
260.
22 H. Nagao, N. Komeda, M. Mukaida, M. Suzuki and K. Tanaka,
Inorg. Chem., 1996, 35, 6909.
23 N. Wei, N. N. Murthy, Q. Chen, J. Zubieta and K. D. Karlin, Inorg.
Chem., 1994, 33, 1953.
24 N. Wei, N. N. Murthy, Z. Tyeklár and K. D. Karlin, Inorg. Chem.,
1994, 33, 1177.
25 W. O. Koch, V. Schünemann, M. Gerdan, A. X. Trautwein and
H.-J. Krüger, Chem. Eur. J., 1998, 4, 1255.
Acknowledgements
26 R. L. Carlin, Magnetochemistry, Springer Verlag, Berlin,
Heidelberg, New York, Tokyo, 1986; O. Kahn, Molecular
Magnetism, VCH Verlag, Weinheim, New York, Cambridge, 1993.
27 M. M. Maltempo, J. Chem. Phys., 1974, 61, 2540; E. L. Bominaar
and R. Block, J. Chem. Phys., 1991, 95, 6712; C. A. Reed and
F. Guiset, J. Am. Chem. Soc., 1996, 118, 3281; S. Mitra, V. R.
Marathe and R. Birdy, Chem. Phys. Lett., 1983, 96, 103.
28 M. D. Stallings, M. M. Morrison and D. T. Sawyer, Inorg. Chem.,
1981, 20, 2655.
Financial support from the Henkel KGaA, Degussa-Hüls AG,
the Deutsche Forschungsgemeinschaft, the Katalyseverbund
NRW, and the Fonds der Chemischen Industrie is gratefully
acknowledged. M. P. thanks the Ministerium für Schule und
Weiterbildung, Wissenschaft und Forschung des Landes
Nordrhein-Westfalen for a Graduiertenstipendium.
29 M. E. Nabi, M. A. Islam and A. H. Khan, J. Bangl. Acad. Sci., 1998,
22, 285; M. Born, P.-A. Carrupt, R. Zinn, F. Brée, J.-P. Tillement,
K. Hostettmann and B. Testa, Helv. Chim. Acta, 1996, 79, 1147;
D. Nematollahi and S. M. Golabi, J. Electroanal. Chem., 1996, 405,
133.
30 Gmelins Handbuch der Anorganischen Chemie, Sauerstoff, 8. Auflage,
Verlag Chemie, Weinheim, 1958.
31 We were able to obtain single crystals of a dinuclear iron()
complex from one solution utilized in the NMR dioxygenation
experiments. The structural features of the complex [Fe2(µ-O)-
(bpba)2Cl2][ClO4]2 are very similar to those of [Fe2(µ-O)(bpia)2-
Cl2]Cl2ؒ4MeOH with antiferromagnetically coupled iron() centers
described in ref. 13. The complete details of this compound are
under current investigation.
32 B. Rieger, A. S. Abu-Surrah, R. Fawzi and M. Steiman,
J. Organomet. Chem., 1995, 497, 73.
33 M. A. Phillips, J. Chem. Soc., 1929, 172, 2393; E. S. Lane, J. Chem.
Soc., 1957, 3313; L. A. Cescon and A. R. Day, J. Org. Chem., 1962,
27, 591.
34 G. M. Sheldrick, SHELXS 97, Program for Crystal Structure
Determination, University of Göttingen, 1997.
35 G. M. Sheldrick, SHELXL 97, Program for Crystal Structure
Refinement, University of Göttingen, 1997.
References
1 L. Que, Jr. and R. Y. N. Ho, Chem. Rev., 1996, 96, 2607.
2 J. D. Lipscomb and A. M. Orville, Metal Ions Biol. Syst., 1992, 28,
243; T. Senda, K. Sygiyama, H. Narita, T. Yamamoto, K. Kimbara,
M. Fukuda, M. Sato, K. Yano and Y. Mitsui, J. Mol. Biol., 1996,
255, 735; D. H. Ohlendorf, J. D. Lipscomb and P. C. Weber, Nature
(London), 1988, 336, 403; L. Que, Jr., Iron Carriers and Iron Proteins,
ed. T. M. Loehr, VCH, New York, 1989.
3 S. J. Lange and L. Que, Jr., Curr. Opin. Chem. Biol., 1998, 2, 159.
4 L. Que, Jr., Bioinorganic Catalysis, eds. J. Reedijk and E. Bouwman,
2nd edn., Marcel Dekker Inc., New York, Basel, 1999.
5 T. Funabiki, Oxygenases and Model Systems, ed. T. Funabiki,
Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.
6 L. Que, Jr., R. C. Kolanczyk and L. S. White, J. Am. Chem. Soc.,
1987, 109, 5373; D. D. Cox and L. Que, Jr., J. Am. Chem. Soc., 1988,
110, 8085.
7 L. Que, Jr., J. D. Lipscomb, E. Münck and J. M. Wood, Biochim.
Biophys. Acta, 1977, 485, 60.
8 T. Funabiki and T. Yamazaki, J. Mol. Catal. A, 1999, 150, 37.
9 H. G. Jang, D. D. Cox and L. Que, Jr., J. Am. Chem. Soc., 1991,
113, 9200.
J. Chem. Soc., Dalton Trans., 2001, 828–837
837