Full Paper
by a radical pathway (Scheme 2b). Moreover, (E)-vinyl sulfone
was selectively obtained upon using a (Z)-ꢀ-nitrostyrene under
the standard conditions (Scheme 2c).
Acknowledgments
We sincerely thank SAIF, Punjab University, Chandigarh, for pro-
viding microanalyses and spectra. T. K. is grateful to the Council
of Scientific and Industrial Research (CSIR), New Delhi, for the
award of a Senior Research Fellowship [File No. 09/001(0370)/
2012-EMR-1], and R. K. is grateful to the Department of Science
and Technology (DST), New Delhi, for the award of a SERB-
Young Scientist position and financial assistance (Registration
No. CS-271/2014).
On the basis of the above results and literature prece-
dent,[23a,24b,24c] a plausible radical addition/elimination mecha-
nism is proposed in Scheme 3. At first, AgI triggers the forma-
tion of sulfonyl radical 2′, and the resulting Ag0 is oxidized to
AgI with the persulfate anion to complete the catalytic cycle.
The addition of the sulfonyl radical to the olefinic double bond
of ꢀ-nitrostyrene 1 generates carbon-centered radical 1′. Finally,
1′ eliminates NO2 and produces the more stable (E)-vinyl sulf-
one 3.
Keywords: Cross-coupling · Elimination · Radical reactions ·
Silver · Sulfur
[1] a) M. Tiecco, L. Testaferri, M. Tingoli, D. Chianelli, M. Montanucci, J. Org.
Chem. 1983, 48, 4795; b) P. Caramella, E. Albini, T. Bandiera, A. C. Coda,
P. Grünanger, F. M. Albini, Tetrahedron 1983, 39, 689.
[2] A. Battace, T. Zair, H. Doucet, M. Santelli, Synthesis 2006, 3495.
[3] a) N. Taniguchi, Synlett 2011, 1308; b) X. Li, Y. Xu, W. Wu, C. Jiang, C. Qi,
H. Jiang, Chem. Eur. J. 2014, 20, 1; c) F. Huang, R. A. Batey, Tetrahedron
2007, 63, 7667; d) A. Kar, I. A. Sayyed, W. F. Lo, H. M. Kaiser, M. Beller,
M. K. Tse, Org. Lett. 2007, 9, 3405; e) M. Bian, F. Xu, C. Ma, Synthesis 2007,
2951; f) S. S. Labadie, J. Org. Chem. 1989, 54, 2496.
[4] a) S. Tang, Y. Wu, W. Liao, R. Bai, C. Liu, A. Lei, Chem. Commun. 2014, 50,
4496; b) Y. Xu, X. Tang, W. Hu, W. Wu, H. Jiang, Green Chem. 2014, 16,
3720; c) S. Liang, R. Zhang, G. Wang, S. Chen, X. Yu, Eur. J. Org. Chem.
2013, 7050; d) X. Li, X. Xu, C. Zhou, Chem. Commun. 2012, 48, 12240; e)
P. Katrun, S. Chiampanichayakul, K. Korworapan, M. Pohmakotr, V. Reutra-
kul, T. Jaipetch, C. Kuhakarn, Eur. J. Org. Chem. 2010, 5633.
[5] Y. Jiang, T.-P. Loh, Chem. Sci. 2014, 5, 4939.
Scheme 3. Plausible mechanism for the formation of vinyl sulfones.
[6] a) M. Uttamchandani, K. Liu, R. C. Panicker, S. Q. Yao, Chem. Commun.
2007, 1518; b) W. R. Roush, S. L. Gwaltney II, J. Cheng, K. A. Scheidt, J. H.
McKerrow, E. Hansell, J. Am. Chem. Soc. 1998, 120, 10994.
[7] K. Mori, K. Ohmori, K. Suzuki, Angew. Chem. Int. Ed. 2009, 48, 5633;
Angew. Chem. 2009, 121, 5743.
[8] a) C. P. Gordon, R. Griffith, P. A. Keller, Medicinal Chemistry 2007, 3, 199;
b) D. C. Meadows, T. Sanchez, N. Neamati, T. W. North, J. G. Hague, Bioorg.
Med. Chem. 2007, 15, 1127.
Conclusions
We developed an efficient silver-catalyzed one-pot protocol for
the highly stereoselective synthesis of (E)-vinyl sulfones by deni-
trative radical cross-coupling of readily available ꢀ-nitrostyrenes
and sodium sulfinates at room temperature under mild reaction
conditions. The reaction involves a radical addition/elimination
pathway for the formation of the product. This is the first report
on the facile formation of C(sp2)–S bonds leading to vinyl sulf-
ones.
[9] N. S. Simpkins, Tetrahedron 1990, 46, 6951.
[10] a) M. Kirihara, J. Yamamoto, T. Noguchi, Y. Hirai, Tetrahedron Lett. 2009,
50, 1180; b) X. Huang, D. Duan, W. Zheng, J. Org. Chem. 2003, 68, 1958.
[11] a) F. Brebion, J. Goddard, L. Fensterbank, M. Malacria, Org. Lett. 2008, 10,
1917; b) W. M. Xu, E. Tang, X. Huang, Synthesis 2004, 13, 2094; c) T. G.
Back, S. Collins, J. Org. Chem. 1981, 46, 3249.
[12] D. A. R. Happer, B. E. Steenson, Synthesis 1980, 10, 806.
[13] a) J. H. van Steenis, J. J. G. S. van Es, A. van der Gen, Eur. J. Org. Chem.
2000, 2787; b) M. Mikolajczyk, W. Perlikowska, J. Omelanczuk, H. Cristau,
A. Perraud-Darcy, J. Org. Chem. 1998, 63, 9716.
[14] I. C. Popoff, J. L. Dever, G. R. Leader, J. Org. Chem. 1969, 34, 1128.
[15] a) M. Bian, F. Xu, C. Ma, Synthesis 2007, 2951; b) W. Zhu, D. Ma, J. Org.
Chem. 2005, 70, 2696; c) J. M. Baskin, Z. Wang, Org. Lett. 2002, 4, 4423.
[16] D. C. Reeves, S. Rodriguez, H. Lee, N. Hahhad, D. Krishnamurthy, C. H.
Senanayake, Tetrahedron Lett. 2009, 50, 2870.
[17] S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, R. Bernini, J. Org. Chem.
2004, 69, 5608.
[18] F. Huang, R. A. Batey, Tetrahedron 2007, 63, 7667.
[19] V. Nair, A. Augustine, T. G. George, L. G. Nair, Tetrahedron Lett. 2001, 42,
6763.
[20] X. Gao, X. Pan, J. Gao, H. Huang, G. Yuan, Y. Li, Chem. Commun. 2015,
51, 210.
[21] R. Chawla, R. Kapoor, A. K. Singh, L. D. S. Yadav, Green Chem. 2012, 14,
1308.
[22] P. Katrun, S. Hlekhlai, J. Meesin, M. Pohmakotr, V. Reutrakul, T. Jaipetch,
D. Soorukram, C. Kuhakarn, Org. Biomol. Chem. 2015, 13, 4785.
Experimental Section
General Procedure for the Denitrative Sulfonylation of ꢀ-Nitro-
styrenes with Sodium Sulfinate: A mixture of (E)-ꢀ-nitrostyrene 1
(0.25 mmol), sodium sulfinate 2 (0.25 mmol), AgNO3 (20 mol-%),
K2S2O8 (0.50 mmol), and DMF (3 mL) was stirred at room tempera-
ture under N2 in a round-bottomed flask for 2 h. Upon completion
of the reaction (monitored by TLC), water (5 mL) was added, and
the mixture was extracted with EtOAc (3 × 5 mL). The combined
organic phases were dried with anhydrous Na2SO4, filtered, and
concentrated under reduced pressure. The resulting crude product
was purified by column chromatography (silica gel; EtOAc/n-hex-
ane, 1:4) to afford an analytically pure sample of (E)-vinyl sulfone 3.
Eur. J. Org. Chem. 2016, 2695–2699
2698
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim