J. Am. Chem. Soc. 2001, 123, 4623-4624
Scheme 1
4623
Terminal Amido and Imido Complexes of
Three-Coordinate Nickel
Daniel J. Mindiola and Gregory L. Hillhouse*
Searle Chemistry Laboratory, Department of Chemistry
The UniVersity of Chicago, Chicago, Illinois 60637
ReceiVed February 9, 2001
The chemistry of late-transition-metal complexes possessing
amido (NR2-) and imido (NR2-) ligands is much less developed
than that of the early- and mid-transition elements.1 This is
particularly true of the nickel triad, where the contrast between
these hard, nitrogen-donor ligands and the soft, electron-rich
metals is considered to be energetically destabilizing and is
exacerbated by the general lack of stabilizing π-donor interactions
involving the ligand lone pair(s) that are commonly found with
terminal amides and imides of the early- and mid-transition metals.
There has been increasing research activity in this area by us and
others,2-4 and it has been demonstrated that amido complexes of
Ni and Pd play key roles in a range of important reactions.5 Imido
complexes of the Ni triad are limited to a few bimetallic and
trimetallic examples possessing bridging (µ2 and µ3) NR2-
moieties.6,7 Stone’s 1970 report of (Ph2MeP)2MdNCF2CFHCF3
(M ) Pd, Pt) complexes incorporating an imido ligand with a
strongly electron-withdrawing fluoropropyl substituent provides
the only examples of terminal Group 10 imido derivatives,
although characterization was limited to 1H and 19F NMR
spectroscopic data, and the exact nature of these compounds is
unclear.8 To date, the only structurally characterized examples
of late-metal complexes possessing terminal imido ligands are
Bergman’s Ir derivatives of the general formulation Cp*IrtNR
(R ) aryl, alkyl, silyl).9
In the course of our studies of the reactions of aryl azides with
Ni(II) alkyls to give amide moieties,2 we have noted that azides
with bulky substituents (i.e., mesityl azide) yield products that
suggest involvement of nitrene (or imido) intermediates.10 More-
over, a recent report from Jones and Vicic presented compelling
evidence that a reactive terminal sulfido complex of Ni(II) was
generated on thermolysis of (PR2CH2CH2PR2)Ni(SH)(Ph), al-
though it was unstable with respect to dimerization via Ni-S-
Ni bridges.11 Herein we report a successful synthetic strategy for
the preparation of monomeric, three-coordinate nickel complexes
containing the chelating 1,2-bis(di-tert-butylphosphino)ethane
(dtbpe) ligand and an amido or imido nitrogen-donor ligand, along
with the structural characterization of the first terminal imido
complex of nickel, a species which features a nickel-nitrogen
multiple bond.
Our initial approach to preparing a terminal imido complex of
Ni(II) involved a modification of Jones’ method for the synthesis
of the transient “L2NidS”(described above).11 Specifically, we
wished to effect deprotonation or dehydrohalogenation of an
appropriate Ni(II) amide (i.e., LxNi(NHR)X). To inhibit imido
bridging, we used bulky substituents in both the ancillary phos-
phine ligand (dtbpe) as well as at nitrogen. Reaction of (dtbpe)-
NiCl2 (1)12 with 1 equiv of lithium 2,6-di-iso-propylphenylamide
(LiNH(2,6-(CHMe2)2C6H3)) gives a mixture of products, including
paramagnetic species. Reduction of 1 with KC8 in THF at -35
°C gives red crystals of the Ni(I) monochloride [(dtbpe)NiCl]2
(2) in 71% yield.13 Related Ni(I) chlorides of chelating diphos-
phine ligands have been reported.14 In contrast to 1, toluene
solutions of 2 react cleanly at -35 °C with Et2O solutions of
lithium 2,6-di-iso-propylphenylamide to afford the paramagnetic
arylamido complex (dtbpe)Ni{NH(2,6-(CHMe2)2C6H3)} (3) as
beet-red crystals in 92% yield (Scheme 1). This Ni(I) complex
(1) (a) Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239. (b) Fryzuk, M.
D.; Montgomery, C. D. Coord. Chem. ReV. 1989, 95, 1. (c) Bryndza, H. E.;
Tam, W. Chem. ReV. 1988, 88, 1163. (d) Lappert, M. F.; Power, P. P.; Sanger,
A. R.; Srivastava, R. C. Metal and Metalloid Amides; Ellis Horwood:
Chichester; 1980. (e) Power, P. P. Comments Inorg. Chem. 1989, 8, 177.
(2) (a) Matsunaga, P. T.; Hess, C. R.; Hillhouse, G. L. J. Am. Chem. Soc.
1994, 116, 3665. (b) Koo, K.; Hillhouse, G. L. Organometallics 1995, 14,
4421. (c) Koo, K.; Hillhouse, G. L. Organometallics 1996, 15, 2669.
(3) Examples of Group 10 amides: (a) Bradley, D. C.; Hursthouse, M. B.;
Smallwood, R. J.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1972, 872.
(b) Fryzuk, M. D.; MacNeil, P. A. J. Am. Chem. Soc. 1981, 103, 3592. (c)
Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J.; Secco, A. S.; Trotter, J.
Organometallics 1982, 1, 918. (d) Hope, H.; Olmstead, M. M.; Murray, B.
D.; Power, P. P. J. Am. Chem. Soc. 1985, 107, 712. (e) Bartlett, R. A.; Chen,
H.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1989, 28, 316. (f) Villanueva,
L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1994, 13, 3921. (g)
VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Inorg. Chem. 1995, 34,
5319. (h) VanderLende, D. D.; Boncella, J. M.; Abboud, K. A. Acta
Crystallogr., Sect. C 1995, 51, 591. (i) Cowan, R. L.; Trogler, W. C. J. Am.
Chem. Soc. 1989, 111, 4750. (j) Seligson, A. L.; Cowan, R. L.; Trogler, W.
C. Inorg. Chem. 1995, 34, 5319. (k) Driver, M. S.; Hartwig, J. F. J. Am.
Chem. Soc. 1997, 119, 8232. (l) Bryndza, H. E.; Fultz, W. C.; Tam, W.
Organometallics 1985, 4, 939. (m) Klein, H.; Karsch, H. H. Chem. Ber. 1973,
106, 2438.
(4) (a) Holland, P. L.; Andersen, R. A.; Bergman, R. G.; Huang, J.; Nolan,
S. P. J. Am. Chem. Soc. 1997, 119, 12800 and references therein. (b) Holland,
P. L.; Smith, M. E.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1997, 119, 12815. (c) Holland, P. L.; Andersen, R. A.; Bergman, R. G. J.
Am. Chem. Soc. 1996, 118, 1092.
(5) (a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
(b) Hartwig, J. F. Pure Appl. Chem. 1999, 71, 1417. (c) Wolfe, J. P.; Wagaw,
S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (d)
Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852.
(6) Meij, R.; Stufkens, D. J.; Vrieze, K.; Brouwers, A. M. F.; Overbeek,
A. R. J. Organomet. Chem. 1978, 155, 123.
1
has been characterized by elemental analysis, IR and H NMR
spectroscopic methods,13 and by single-crystal X-ray diffraction.15
The molecular structure of 3 features a planar, three-coordinate
(10) (a) Lin, B.; Hillhouse, G. L. Abstracts of Papers, 213th ACS National
Meeting; San Francisco, CA, April, 1997; Abstract INOR 636. (b) Lin, B. L.
Ph.D. Thesis, The University of Chicago (Chicago, IL), December, 2000.
(11) (a) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 4070.
(b) Vicic, D. A.; Jones, W. D. J. Am. Chem. Soc. 1999, 121, 7606.
(12) Bach, I.; Goddard, R.; Kopiske, C.; Seevogel, K.; Po¨rschke, K.-R.
Organometallics 1999, 18, 10.
(13) See the Supporting Information for complete spectroscopic and
analytical details for 2-5 and solution magnetic moments for 2 and 3.
(14) Scott, F.; Kru¨ger, C.; Betz, P. J. Organomet. Chem. 1990, 387, 113.
(15) Crystal data for 3: C30H58NNiP2, orthorhombic, P212121, a ) 10.8603-
(9) Å, b ) 16.6536(14) Å, c ) 17.3090(14) Å, Z ) 4, µ(Mo KR) ) 7.40
cm-1, T ) 100 K, V ) 3130.6(4) Å3, λ ) 0.71073 Å, Dc ) 1.174 mg/mm3.
Of 19258 data collected (red crystal, 1.70 e θ e 28.29) 7365 were independent
and observed with I > 2σ(I). Flack x parameter ) -0.004, 0.010 esd. All
non-hydrogen atoms were anisotropically refined, and hydrogen atoms were
idealized except for the H attached to N, which was located and refined
isotropically. R(F) ) 0.035 and R(wF2) ) 0.063.
(7) (a) Otsuka, S.; Nakamura, A.; Yoshida, T. Inorg. Chem. 1968, 7, 261.
(b) Muller, J.; Dorner, H.; Kohler, F. H. Chem. Ber. 1973, 106, 1122. (c)
Klein, H.-F.; Haller, S.; Ko¨nig, H.; Dartiguenave, Y.; Menu, M.-J. J. Am.
Chem. Soc. 1991, 113, 4673.
(8) McGlinchey, M. J.; Stone, F. G. A. J. Chem. Soc., Chem. Commun.
1970, 1265.
(9) (a) Gleuck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am.
Chem. Soc. 1991, 113, 2041. (b) Gleuck, D. S.; Hollander, F. J.; Bergman, R.
G. J. Am. Chem. Soc. 1989, 111, 2719.
10.1021/ja010358a CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/21/2001