N. A. LaBerge, J. A. Love
FULL PAPER
lan, C. Quesnelle, V. Snieckus, J. Org. Chem. 1992, 57, 4066–
4068; d) L. Xu, Z.-W. Wu, X.-Y. Lu, B.-T. Guan, K.-Q. Zhao,
Z.-J. Shi, Org. Lett. 2010, 12, 884–887; e) K. W. Quasdorf, M.
Riener, K. V. Petrova, N. K. Garg, J. Am. Chem. Soc. 2009,
131, 17748–17749; f) A. Antoft-Finch, T. Blackburn, V.
Snieckus, J. Am. Chem. Soc. 2009, 131, 17750–17752.
For examples of C–C bond formation with ethers, see: a) E.
Wenkert, E. L. Michelotti, C. S. Swindell, J. Am. Chem. Soc.
1979, 101, 2246–2247; b) E. Wenkert, E. L. Michelotti, C. S.
Swindell, M. Tingoli, J. Org. Chem. 1984, 49, 4894–4899; c)
J. W. Dankwardt, Angew. Chem. Int. Ed. 2004, 43, 2428–2432;
Angew. Chem. 2004, 116, 2482; d) F. Kakiuchi, M. Usui, S.
Ueno, N. Chatani, S. Murai, J. Am. Chem. Soc. 2004, 126,
2706–2707; e) M. Tobisu, T. Shimasaki, N. Chantani, Angew.
Chem. Int. Ed. 2008, 47, 4866–4869; Angew. Chem. 2008, 120,
4944; f) B.-T. Guan, S.-K. Xiang, T. Wu, Z. P. Sun, B.-Q.
Wang, K.-Q. Zhao, Z.-J. Shi, Chem. Commun. 2008, 1437–
1439; g) B. T. Guan, S. K. Xiang, B. Q. Wang, Z. P. Sun, Y.
Wang, K.-Q. Zhao, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130,
3268–3269; h) M. Tobisu, T. Simasaki, N. Chatani, Chem. Lett.
2009, 38, 710–711; i) J. Cornella, C. Zarate, R. Martin, Chem.
Soc. Rev. 2014, 43, 8081–8097; j) M. Tobisu, T. Morioka, N.
Chatani, A. Ohtsuki, Chem. Sci. 2015, DOI: 10.1039/
C5SC00305A.
a) G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38,
2447–2464; b) D. A. Horton, G. T. Bourne, M. L. Smythe,
Chem. Rev. 2003, 103, 893–930; c) K. L. Goa, J. Wagstaff,
Drugs 1996, 51, 820–845.
a) Y.-L. Lin, Y. Meng, W. Jiang, B. Roux, Proc. Natl. Acad.
Sci. USA 2013, 110, 1664–1669; b) E. Martinez, A. Gonzalez-
Cordon, E. Ferrer, P. Domingo, E. Negredo, F. Gutierrez, J.
Portilla, A. Curran, D. Podzamczer, J. Murillas, J. L. Bernar-
dino, I. Santos, J. A. Carton, J. Peraire, J. Pich, I. Perez, J. M.
Gatell, HIV Med. 2014, 15, 330–338.
7.26 (t, J = 8.4 Hz, 1 H), 7.21–7.17 (m, 1 H), 7.08 (s, 1 H) ppm.
13C{1H} NMR (CDCl3, 150 MHz, 298 K): δ = 154.67, 152.33,
148.55, 145.73, 131.66, 129.24, 128.29, 124.60, 123.30, 122.87,
120.82, 110.91, 102.46 ppm. HRMS (ESI): calcd. for C13H9NO [M
+ H]+ 196.0684, found 196.0762.
3-(1,3-Benzodioxol-5-yl)pyridine (2u) [869985-49-9]:[35] Purification
by column chromatography (hexane/EtOAc, 3:1) afforded 2u as a
[4]
1
white solid (41 mg, 41%). H NMR (CDCl3, 300 MHz, 298 K): δ
= 8.78 (s, 1 H), 8.55 (s, 1 H), 7.83–7.80 (d, J = 5.9 Hz, 1 H), 7.35
(s, 1 H), 7.04 (s, 2 H), 6.93 (d, J = 8.5 Hz, 1 H), 6.02 (s, 2 H) ppm.
13C{1H} NMR (CDCl3, 75 MHz, 298 K): δ = 148.62 (2 C), 147.99
(2 C), 136.67, 134.34, 132.09, 123.73, 121.05, 109.07, 107.70,
101.53 ppm. HRMS (ESI): calcd. for C12H9NO2 [M + H]+
200.0633, found 200.0712.
4-Phenylpyridine (2w) [939-23-1]:[36] Purification by column
chromatography (hexane/EtOAc, 3:1) afforded 2w (37 mg, 49%) as
1
a white solid. H NMR (CDCl3, 600 MHz, 298 K): δ = 8.67 (s, 2
H), 7.65 (m, 2 H), 7.50 (m, 4 H), 7.45 (m, 1 H) ppm. 13C{1H}
NMR (CDCl3, 150 MHz, 298 K): δ = 150.32, 148.68, 138.28,
129.33, 129.31, 127.20, 121.89 ppm. HRMS (ESI): calcd. for
C11H9N [M + H]+ 156.0735, found 156.0813.
[5]
[6]
CCDC-1404055 (for B) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Acknowledgments
We thank the University of British Columbia (UBC), the Natural
Sciences and Engineering Research Council of Canada (NSERC)
Discovery, Research Tools and Instrument (RTI) Grant Program,
and the Collaborative Research and Training Experience Program
(CREATE) programs for the support of this research. Dr. Brian O.
Patrick is thanked for help with collection of X-ray data.
[7]
T. Eicher, S. Hauptmann, The Chemistry of Heterocycles –
Structure, Reactions, Syntheses and Application (translated by
H. Suchcitzky, J. Suchtizky), Wiley-VCH, Weinheim, 2003.
A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004.
K. Amaike, K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem.
Soc. 2012, 134, 13573–13576.
[8]
[9]
[10]
[11]
D. Zhao, J. You, C. Hu, Chem. Eur. J. 2011, 17, 5466–5492.
G. Deng, L. M. Levy, L. J. Gooßen, Science 2006, 313, 662–
664.
[1] For reviews on nickel, see: a) Y. Tamaru, in Modern Orga-
nonickel Chemistry, Wiley-VCH, Weinheim, 2005; b) J. Yamag-
uchi, K. Muto, K. Itami, Eur. J. Org. Chem. 2013, 19–30; c)
S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509,
299–309; d) M. Henrion, V. Ritleng, M. J. Chetuti, ACS Catal.
2015, 5, 1283–1302.
[12]
a) N. Rodriguez, L. J. Gooßen, Chem. Soc. Rev. 2011, 10, 5030–
5048; b) J. Cornella, I. Larrosa, Synthesis 2012, 44, 653–676;
c) O. Baudoin, Angew. Chem. Int. Ed. 2007, 46, 1373–1375;
Angew. Chem. 2007, 119, 1395; d) K. Gooßen, N. Rodriguez,
L. J. Gooßen, Angew. Chem. Int. Ed. 2008, 47, 3100–3120; An-
gew. Chem. 2008, 120, 3144; e) D. G. Yu, B.-J. Li, Z.-J. Shi,
Acc. Chem. Res. 2010, 43, 1486–1495; f) W. I. Dzik, P. P. Lange,
L. J. Gooßen, Chem. Sci. 2012, 3, 2671–2678.
For examples of C–C bond formation with aryl sulfonates, see:
a) D. Z. Zim, V. R. Lando, J. Dupont, A. L. Monteiro, Org.
Lett. 2001, 3, 3049–3051; b) Z.-Y. Hu, Q.-S. Hu, J. Am. Chem.
Soc. 2004, 126, 3058–3059; c) G. M. Golding, J. Smidrkal, O.
Weichold, V. Percec, J. Org. Chem. 2004, 69, 3447–3452; d) L.
Zhang, T. Meng, J. Wu, J. Org. Chem. 2007, 72, 9346–9349; e)
C. M. So, C. P. Lau, A. S. C. Chan, F. Y. Kwong, J. Org. Chem.
2008, 73, 7731–7734; f) R. H. Munday, J. R. Martinelli, S. L.
Buchwald, J. Am. Chem. Soc. 2008, 130, 2754–2755; g) B.
Bhayana, B. P. Fors, S. L. Buchwald, Org. Lett. 2009, 11, 3954–
3957; h) W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, J. Org.
Chem. 2010, 75, 5109–5112; i) J. R. Naber, B. P. Fors, X. Wu,
J. T. Gunn, S. L. Buchwald, Heterocycles 2010, 80, 1215–1226.
For examples of C–C bond formation with phosphates, see: a)
H. Chen, Z. Huang, Z. Hu, G. Tang, P. Xu, Y. Zhao, C. H.
Cheng, J. Org. Chem. 2011, 76, 2338–2344; b) N. Yoshikai, H.
Matsuda, E. A. Nakamura, J. Am. Chem. Soc. 2009, 131,
9590–9599; c) D. Gauthier, S. Beckendorf, T. M. Gøgsig, A. T.
[2] For examples of C–C bond formation with carboxylates, see:
a) J. Paetzold, L. J. Gooßen, Angew. Chem. Int. Ed. 2002, 41,
1237–1241; Angew. Chem. 2002, 114, 1285; b) J. Paetzold, L. J.
Gooßen, Angew. Chem. Int. Ed. 2004, 43, 1095–1098; Angew.
Chem. 2004, 116, 1115; c) D. V. Gribkov, S. J. Pastine, M.
Schürich, D. J. Sames, J. Am. Chem. Soc. 2007, 129, 11750–
11755; d) K. W. Quasdorf, X. Tian, N. K. Garg, J. Am. Chem.
Soc. 2008, 130, 14422–14423; e) Z. Li, S.-L. Zhang, Y. Fu, Q.-
X. Guo, L. Liu, J. Am. Chem. Soc. 2009, 131, 8815–8823; f)
B.-L. Li, Y.-Z. Li, X.-U. Lu, L. Liu, B.-T. Guan, Z.-J. Shi,
Angew. Chem. Int. Ed. 2008, 47, 10124–10127; Angew. Chem.
2008, 120, 10278; g) B.-T. Guan, Y. Wang, B.-J. Li, D.-G. Yu,
Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 14468–14470; h) F.
Beaumard, G. A. Molander, Org. Lett. 2010, 12, 4022–4025;
for an example of C–N bond formation with esters, see: i) T.
Shimasaki, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed.
2010, 49, 2929–2932; Angew. Chem. 2010, 122, 2991.
[13]
[3] For examples of C–C bond formation with carbamates, see: a)
K. W. Quasdorf, A. Antoft-Finch, P. Liu, A. L. Silberstein, A.
Lomaromi, T. Blackburn, S. D. Ramgren, K. N. Houk, V.
Snieckus, N. K. Garg, J. Am. Chem. Soc. 2011, 133, 6352–6393;
b) A. L. Silberstein, S. D. Ramgren, N. K. Garg, Org. Lett.
2012, 14, 3796–3799; c) S. Sengupta, M. Leite, D. Soares Ras-
[14]
5552
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 5546–5553