2068
C. E. Stephens et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2065–2069
suggests a mode of action for which DNA binding does
not play a major role. In general, the DNA affinities for
the substituted compounds in both Tables are reduced
compared to the parent molecules (3a and 4a). How-
ever, the DNA affinities for most of these molecules are
similar to that of pentamidine.
June, 2002.
6. Lira, R. S.; Sundar, S.; Makharia, A.; Kenney, R.; Gam,
A.; Saraiva, E.; Sacks, D. J. Infect. Dis. 1999, 180, 564.
7. Jha, T.; Sundar, S.; Thakur, C.; Bachmann, P.; Karbwang,
J.; Fischer, C.; Voss, A.; Berman, J. N. Eng. J. Med. 1999, 341,
1795.
8. Soto, J.; Toledo, J.; Gutierrez, P.; Nicholls, R. S.; Padilla,
J.; Engel, J.; Fischer, C.; Voss, A.; Bermann, J. Clin. Infect.
Dis. 2001, 33, 57.
9. Hellier, I.; Dereure, O.; Tournillac, I.; Pratlong, F.; Guillot,
B.; Dedet, J.; Guilhou, J. Dermatology 2000, 200, 120.
10. Soto, J.; Buffet, P.; Grogl, M. J.; Berman, J. Am. J. Trop.
Med. Hyg. 1994, 50, 107.
11. Tidwell, R. R.; Boykin, D. W. In Small Molecule DNA
and RNA Binders: From Synthesis to Nucleic Acid Complexes.
Eds. Demeunynck, M.; Bailly, C.; Wilson, W. D. Wiley-VCH,
New York, 2003, 2, 416.
The antimicrobial activities of the diguanidino com-
pounds are presented in Table 1. The activities of the
diguanidiniums are only modest. Only 3b and 3c show
IC50 values which are comparable to those of pentami-
dine and furamidine. Three of the diguanidino analo-
gues (3b, 3c, 3g) show activity against T. cruzi which is
comparable to that of pentamidine and superior to that
of furamidine.
The series of 2-pyridyl reversed amidines exhibits con-
siderable antimicrobial activity against both protozoan
parasites (Table 2). Again, there is a reasonably good
correlation between the antileishmanial activities
observed for these compounds from both in vitro mod-
els. Both models indicate IC50 values of less than 1 mmol
for five molecules (4b, 4c, 4d, 4f, 4g). The most active
compound (4d) is found to be at least 170 times more
active than pentamidine in the macrophage model. It is
noteworthy that the replacement of the pyridyl rings
with phenyl rings results in significant loss of activity
although the DNA binding affinity is improved. Good
in vitro activity versus T. cruzi is also noted for the
2-pyridyl reversed amidines, with six of these analogues
showing IC50 values of less than 1 mmol. The best com-
pound 4g is 40-fold more active than pentamidine and
exhibits a selectivity index of near 50.
12. Greenhill, J. V.; Lue, P. Prog. Med. Chem. 1993, 30,
203.
13. Del Poeta, M.; Schell, W. A.; Dykstra, C. C.; Jones, S. K.;
Tidwell, R. R.; Kumar, A.; Boykin, D. W.; Perfect, J. R.
Antimicrob. Agents Chemother. 1998, 42, 2503.
14. Blagburn, B. L.; Drain, K. L.; Land, T. M.; Moore, P. H.;
Lindsay, D. S.; Kumar, A.; Shi, J.; Boykin, D. W.; Tidwell,
R. R. J. Parasitol. 1998, 84, 851.
15. Boykin, D. W.; Kumar, A.; Xiao, G.; Wilson, W. D.;
Bender, B. C.; McCurdy, D. R.; Hall, J. E.; Tidwell, R. R. J.
Med. Chem. 1998, 41, 124.
16. Das, B. P.; Boykin, D. W. J. Med. Chem. 1976, 20, 531.
17. Edwards, K. J.; Jenkins, T. C.; Neidle, S. Biochemistry
1992, 31, 7104.
18. Trent, J. O.; Clark, G. R.; Kumar, A.; Wilson, W. D.;
Boykin, D. W.; Hall, J. E.; Tidwell, R. R.; Blagburn, B. L.;
Neidle, S. J. Med. Chem. 1996, 36, 4554.
19. Wilson, W. D.; Tanious, F.; Ding, D.; Kumar, A.; Boy-
kin, D. W.; Colson, P.; Houssier, C.; Bailly, C. J. Am. Chem.
Soc. 1998, 120, 10310.
These studies identify two new classes of dicationic
compounds with activity against Leishmania and
T. cruzi. The reversed amidines are particularly inter-
esting in that they are far superior to pentamidine in
antiparasitic activity in vitro. For example, pentami-
dine has little measurable activity against intracellular
Leishmania, while the reversed amidines reduce parasite
burdens in infected macrophages at sub-micromolar
concentrations. The task remains to identify com-
pounds from these structural classes with acceptable in
vivo toxicity profiles that possess oral activity in animal
models.
20. Bell, C. A.; Dykstra, C. C.; Naiman, N. N.; Cory, M.;
Fairley, T. A.; Tidwell, R. R. Antimicrob. Agents Chemother.
1993, 37, 2668.
21. Hildebrandt, E. F.; Boykin, D. W.; Tidwell, R. R.; Dyk-
stra, C. C. J. Eukaryotic Microbiol. 1998, 45, 112.
22. Bailly, C.; Dassonneville, L.; Carrascol, C.; Lucasl, D.;
Kumar, A.; Boykin, D. W.; Wilson, W. D. Anti-Cancer Drug
Des. 1999, 14, 47.
23. Calonge, M.; Johnson, R.; Balana-Fouce, R.; Ordonez, D.
Biochem. Pharmacol. 1996, 52, 835.
24. Vercesi, A.; Docampo, R. Biochem. J. 1992, 284, 463.
25. Francesconi, I.; Wilson, W. D.; Tanious, F. A.; Hall, J. E.;
Bender, B. K.; McCurdy, D. R.; Tidwell, R. R.; Boykin, D. W.
J. Med. Chem. 1999, 42, 2260.
26. Boykin, D. W.; Kumar, A.; Bender, B. K.; Hall,
J. E.; Tidwell, R. R. Bioorg. Med. Chem. Lett. 1996, 6,
3017.
Acknowledgements
This work was supported by awards from the Bill and
Melinda Gates Foundation and NIH (RO1GM61587).
27. Hall, J. E.; Kerrigan, J. E.; Ramachandran, K.; Bender,
B. C.; Stanko, J. P.; Jones, S. K.; Patrick, D. A.; Tidwell, R. R.
Antimicrob. Agents Chemother. 1998, 42, 666.
28. Rahmathullah, S. M.; Hall, J. E.; Brender, B. K.;
McCurdy, D. R.; Tidwell, R. R.; Boykin, D. W. J. Med.
Chem. 1999, 42, 3994.
References and Notes
29. Hansen, W. L.; Chapman, W. L.; Kinnamon, K. E. Int. J.
Parasitology 1977, 7, 443.
1. Coura, J. R.; de Castro, S. L. Mem. Inst. Oswaldo Cruz.
2002, 97, 3.
2. Urbina, J. A. Curr. Pharm. Des. 2002, 8, 287.
3. Drugs for Parasitic Infections. The Medical Letter, April
2002, 1.
30. Steck, E. A.; Kinnamon, K. E.; Rane, D. S.; Hanson,
W. L. Experimential Parasitology 1981, 52, 404.
31. Bell, C. A.; Hall, J. E.; Kyle, D. E.; Grogl, M.; Ohemeng,
K. A.; Allen, M. A.; Tidwell, R. R. Antimicrob. Agents Che-
mother. 1990, 34, 1381.
4. Esocbar, P.; Matu, S.; Marques, C.; Croft, S. L. Acta Tro-
pica 2002, 81, 151.
32. Brendle, J. J.; Outlaw, A.; Kumar, A.; Boykin, D. W.;