Journal of the American Chemical Society
Communication
(33) Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Science 2017, 356,
1059−1063.
(34) 4-Chloroanisole and 4-chlorotoluene are observed in 2% and 5%,
respectively, along with phosphine decomposition. See SI for details.
(35) Tobiszewski, M.; Namiesnik, J.; Pena-Pereira, F. Green Chem.
2017, 19, 5911−5922.
ACKNOWLEDGMENTS
■
We thank NSERC, CONACYT, and the FQRNT supported
Centre for Green Chemistry and Catalysis for funding this
research.
(36) There is imperfect mass balance arising from the aryl exchange of
aromatic units on the Xantphos ligand itself at high temperatures, which
leads to ca. 5−10% phenyl iodide and phenyl acid chloride
formation.37−39
REFERENCES
■
(1) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018,
118, 2249−2295.
(2) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062−5085.
(37) Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem. 1995,
60, 12−13.
́
(3) Molnar, A. R. D. Palladium-Catalyzed Coupling Reactions: Practical
(38) Goodson, F. E.; Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc.
1997, 119, 12441−12453.
Aspects and Future Developments; Wiley-VCH: Weinheim, Germany,
2013.
(39) Klingensmith, L. M.; Strieter, E. R.; Barder, T. E.; Buchwald, S. L.
Organometallics 2006, 25, 82−91.
(4) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 1232−1233.
(5) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13944−
13945.
(6) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003−
8104.
(40) van Leeuwen, P. W. N. M.; Kamer, P. C. J. Catal. Sci. Technol.
2018, 8, 26−113.
(7) Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 14844−
14845.
(8) Shen, X.; Hyde, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,
14076−14078.
(9) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416−
11417.
(10) Newman, S. G.; Howell, J. K.; Nicolaus, N.; Lautens, M. J. Am.
Chem. Soc. 2011, 133, 14916−14919.
(11) Liu, H.; Li, C.; Qiu, D.; Tong, X. J. Am. Chem. Soc. 2011, 133,
6187−6193.
(12) Sather, A. C.; Buchwald, S. L. Acc. Chem. Res. 2016, 49, 2146−
2157.
(13)Ye, Y.;Takada, T.;Buchwald, S. L. Angew. Chem., Int. Ed. 2016,55,
15559−15563.
(14) Petrone, D. A.; Franzoni, I.; Ye, J.; Rodríguez, J. F.; Poblador-
Bahamonde, A. I.; Lautens, M. J. Am. Chem. Soc. 2017, 139, 3546−3557.
(15) Sperger, T.; Le, C. M.; Lautens, M.; Schoenebeck, F. Chem. Sci.
2017, 8, 2914−2922.
(16) Quesnel, J. S.; Arndtsen, B. A. J. Am. Chem. Soc. 2013, 135,
16841−16844.
(17) Quesnel, J. S.; Kayser, L. V.; Fabrikant, A.; Arndtsen, B. A. Chem. -
Eur. J. 2015, 21, 9550−9555.
(18) Tjutrins, J.; Arndtsen, B. A. J. Am. Chem. Soc. 2015, 137, 12050−
12054.
(19) Garrison Kinney, R.; Tjutrins, J.; Torres, G. M.; Liu, N. J.;
Kulkarni, O.; Arndtsen, B. A. Nat. Chem. 2017, 10, 193.
(20) Quesnel, J. S.; Moncho, S.; Ylijoki, K. E. O.; Torres, G. M.;
Brothers, E. N.; Bengali, A. A.; Arndtsen, B. A. Chem. - Eur. J. 2016, 22,
15107−15118.
(21) Gautam, P.; Bhanage, B. M. Catal. Sci. Technol. 2015, 5, 4663−
4702.
(22) Wieç kowska, A.; Fransson, R.; Odell, L. R.; Larhed, M. J. Org.
Chem. 2011, 76, 978−981.
(23) Lescot, C.; Nielsen, D. U.; Makarov, I. S.; Lindhardt, A. T.;
Daasbjerg, K.; Skrydstrup, T. J. Am. Chem. Soc. 2014, 136, 6142−6147.
(24) Natte, K.; Dumrath, A.; Neumann, H.; Beller, M. Angew. Chem.,
Int. Ed. 2014, 53, 10090−10094.
(25)Ueda, T.;Konishi, H.;Manabe, K. Angew. Chem., Int. Ed. 2013, 52,
8611−8615.
(26) Friis, S. D.; Lindhardt, A. T.; Skrydstrup, T. Acc. Chem. Res. 2016,
49, 594−605.
(27) Qi, X.; Li, C.-L.; Wu, X.-F. Chem. - Eur. J. 2016, 22, 5835−5838.
(28) Malapit, C. A.; Ichiishi, N.; Sanford, M. S. Org. Lett. 2017, 19,
4142−4145.
(29) Keaveney, S. T.; Schoenebeck, F. Angew. Chem., Int. Ed. 2018, 57,
4073−4077.
(30) Fang, X.; Cacherat, B.; Morandi, B. Nat. Chem. 2017, 9, 1105.
(31) Yu, P.; Morandi, B. Angew. Chem., Int. Ed. 2017, 56, 15693−
15697.
(32) Bhawal, B. N.; Morandi, B. ACS Catal. 2016, 6, 7528−7535.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX