Organometallics
Article
precludes the use of spin integration to quantify NiI yields by EPR
spectroscopy.
(26) Park, N. H.; Teverovskiy, G.; Buchwald, S. L. Org. Lett. 2014,
(58) Complex 1 is stable in toluene-d8 under these conditions, with
only ca. 1% decomposition observed after 48 h in the absence of aryl
halide.
16, 220.
(59) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
(60) Alcazar-Roman, L. M.; Hartwig, J. F. Organometallics 2002, 21,
491.
(27) Standley, E. A.; Smith, S. J.; Muller, P.; Jamison, T. F.
Organometallics 2014, 33, 2012.
̈
(28) The limited solubility of 1 and the sensitivity of the
spectrometer mean that data can be acquired every ca. 6 min at
best. All rate constants reported are obtained from data that give a
good fit to first order for the first ca. 3 half-lives.
(29) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319.
(30) Foa, M.; Cassar, L. J. Chem. Soc., Dalton Trans. 1975, 2572.
(31) Brauer, D. J.; Krueger, C. Inorg. Chem. 1977, 16, 884.
(32) The mechanism might proceed via dissociation of one COD
alkene and coordination of the substrate. However, if this were the
case, it would also lead to COD exchange via the stepwise dissociation
of one alkene, association of another COD molecule, and dissocation
of the original COD molecule.
(33) Zenkina, O. V.; Karton, A.; Freeman, D.; Shimon, L. J. W.;
Martin, J. M. L.; van der Boom, M. E. Inorg. Chem. 2008, 47, 5114.
(34) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(35) p-Chlorobenzamide and N-(p-chlorophenyl)succinamide are
insufficiently soluble for study, while p-chloroacetophenone, p-
chlorobenzophenone, and diethyl p-chlorobenzamide reacted extra-
ordinarily quickly, with half-lives of much less than 10 min. The last
three substrates are currently being examined in more detail in our
laboratory.
(36) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665.
(37) Ahlquist, M.; Norrby, P.-O. Organometallics 2007, 26, 550.
(38) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434.
(39) Amatore, C.; Jutand, A.; Suarez, A. J. Am. Chem. Soc. 1993, 115,
9531.
(61) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed.
2003, 42, 5749.
(62) Langer, J.; Fischer, R.; Gorls, H.; Theyssen, N.; Walther, D. Z.
̈
Anorg. Allg. Chem. 2007, 633, 557.
(63) Page, M. J.; Lu, W. Y.; Poulten, R. C.; Carter, E.; Algarra, A. G.;
Kariuki, B. M.; Macgregor, S. A.; Mahon, M. F.; Cavell, K. J.; Murphy,
D. M.; Whittlesey, M. K. Chem. - Eur. J. 2013, 19, 2158.
(64) Beck, R.; Shoshani, M.; Krasinkiewicz, J.; Hatnean, J. A.;
Johnson, S. A. Dalton Trans. 2013, 42, 1461.
(65) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123,
4623.
(66) Holland, P. L.; Cundari, T. R.; Perez, L. L.; Eckert, N. A.;
Lachicotte, R. J. J. Am. Chem. Soc. 2002, 124, 14416.
(67) Bai, G.; Wei, P.; Stephan, D. W. Organometallics 2005, 24, 5901.
(68) Mabbs, F. E.; Collison, D. Electron Paramagnetic Resonance of d
Transition Metal Complexes; Elsevier: Amsterdam, 1992.
(69) Wada, M.; Kusabe, K.; Oguro, K. Inorg. Chem. 1977, 16, 446.
(70) Fahey, D. R.; Baldwin, B. A. Inorg. Chim. Acta 1979, 36, 269.
(71) Chatt, J.; Shaw, B. L. J. Chem. Soc. 1960, 1718.
(72) Hidai, M.; Kashiwagi, T.; Ikeuchi, T.; Uchida, Y. J. Organomet.
Chem. 1971, 30, 279.
(73) Uchino, M.; Asagi, K.; Yamamoto, A.; Ikeda, S. J. Organomet.
Chem. 1975, 84, 93.
(74) Semmelhack, M. F.; Helquist, P.; Jones, L. D.; Keller, L.;
Mendelson, L.; Ryono, L. S.; Gorzynski Smith, J.; Stauffer, R. D. J. Am.
Chem. Soc. 1981, 103, 6460.
(75) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
(76) Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12719.
(77) Dubinina, G. G.; Brennessel, W. W.; Miller, J. L.; Vicic, D. A.
Organometallics 2008, 27, 3933.
(40) Jutand, A.; Hii, K. K.; Thornton-Pett, M.; Brown, J. M.
Organometallics 1999, 18, 5367.
(41) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 194.
(42) Hegedus, L. S.; Thompson, D. H. P. J. Am. Chem. Soc. 1985,
107, 5663.
(78) Pilloni, G.; Toffoletti, A.; Bandoli, G.; Longato, B. Inorg. Chem.
2006, 45, 10321.
(43) Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276.
(44) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem. - Eur. J. 2011, 17,
1728.
(79) Eisch, J. J.; Piotrowski, A. M.; Han, K. I.; Kruger, C.; Tsay, Y. H.
Organometallics 1985, 4, 224.
(80) Klein, A. Z. Anorg. Allg. Chem. 2001, 627, 645.
(81) Seidel, W. Z. Chem. 1985, 25, 411.
(45) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058.
(46) Leowanawat, P.; Zhang, N.; Resmerita, A.-M.; Rosen, B. M.;
Percec, V. J. Org. Chem. 2011, 76, 9946.
(47) Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc.
2009, 131, 17750.
(82) Arcas, A.; Royo, P. Inorg. Chim. Acta 1978, 30, 205.
(83) Arcas, A.; Royo, P. Inorg. Chim. Acta 1978, 31, 97.
(84) Casares, J. A.; Espinet, P.; Martín-Alvarez, J. M.; Martínez-
Ilarduya, J. M.; Salas, G. Eur. J. Inorg. Chem. 2005, 2005, 3825.
(85) Parshall, G. W. J. Am. Chem. Soc. 1974, 96, 2360.
(86) On heating in benzene-d6 at 323 K in the presence of an internal
standard, 9% decomposition was observed after 24 h. In a 2/1
benzene-d6/THF mixture, less than 1% decomposition was observed
after 24 h at 323 K.
(48) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed.
2008, 47, 4866.
́
(49) Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132,
17352.
(50) Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am. Chem. Soc.
2011, 133, 19505.
(87) Jones, G. D.; Anderson, T. J.; Chang, N.; Brandon, R. J.; Ong,
G. L.; Vicic, D. A. Organometallics 2004, 23, 3071.
(51) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008,
130, 14422.
(88) Yamamoto, T.; Wakabayashi, S.; Osakada, K. J. Organomet.
Chem. 1992, 428, 223.
(89) Hatnean, J. A.; Shoshani, M.; Johnson, S. A. Inorg. Chim. Acta
(52) Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y.-F.; Houk, K. N.;
Garg, N. K. Angew. Chem., Int. Ed. 2016, 55, 2810.
(53) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett.
2001, 3, 3049.
2014, 422, 86.
(90) We propose that the initial decrease in [1] is due to the low
concentration of COD present until the reaction has progressed. If
Ni(dppf) is not captured by COD, it decomposes, as shown by
reactions of [Ni(Ar)X(dppf)] with ArMgX in the absence of COD.
However, adding COD inhibits the reaction, because comproportio-
nation relies on a coordinatively unsaturated [Ni(dppf)] species. In
oxidative addition reactions, [Ni(dppf)] formed in this way can react
directly with the aryl halide present.
(91) When reactions are carried out with 5 or 10 equiv of aryl halide,
a much poorer fit to a psuedo-first-order kinetic regime is observed.
This is possibly because as [ArX] decreases the equilibrium between 1
plus ArX and [Ni(ArX)(dppf)] plus COD shifts towards the left.
(54) Gao, H.; Li, Y.; Zhou, Y.-G.; Han, F.-S.; Lin, Y.-J. Adv. Synth.
Catal. 2011, 353, 309.
(55) Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.;
Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus,
V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
(56) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc.
2009, 131, 8815.
(57) p-F3CC6H4Cl undergoes reaction approximately 30% more
slowly in toluene-d8 than in benzene-d6 at 323 K. However, p-
F3CC6H4Br and p-F3CC6H4OTs are studied under two reaction
conditions each, in order to allow relative rates to be quantified in the
reactivity scale.
J
Organometallics XXXX, XXX, XXX−XXX