L. Battan et al. / Inorganica Chimica Acta 358 (2005) 555–564
563
[4] C. Bianchini, A. Meli, Acc. Chem. Res. 31 (1998) 109.
[5] V. Brabec, J. Kasparkova, Drug Resist. Updates 5 (2002) 147.
[6] J. Reedijk, Chem. Rev. 99 (1999) 2499.
ported JPt–P values [47] strongly suggest O-coordination
of Me2SO. We therefore believe that a major role for the
preference for O-coordination here described must be
attributed to antisymbiosis.
[7] K.J. Narnham, M. I Djuran, D.d.S. Murdoch, P.J. Sadler, Chem.
Commun. (1994) 721.
As pointed out in the introduction, antisymbiosis is
defined as the preference of a hard donor ligand trans
to a soft ligand attached to a soft metal ion [13]. This ef-
fect is strictly related to the orbitals utilised to form the
metal-ligand bonds. Ligands in trans to each other com-
pete for the same orbitals for both r and p bonds, there-
fore, because of the p component of the Pt–phosphine
bond, it is advantageous to have a hard ligand, with
only r Pt–L component, trans to P [14].
Antisymbiosis has relevant effects in coordination
chemistry: it explains the difficulty of obtaining certain
isomers in square planar complexes [48], some cases of
linkage isomerism [11,13,47–50], as in [Pt(Me2SO-
O)2(Me2SO-S)2]2+ [51], as well as the outcome of certain
reactions; for instance, we may cite the remarkable reac-
tivity reported for cis-[Pt(acO-O)2(Et2S)2], which, upon
treatment with quinones, gives [Pt(Et2S)2(quinone-
O,Oꢀ)], while reaction with PPh3 yields cis-[Pt(acO-
O)2(PPh3)2] [52].
[8] A. Paolicchi, E. Lorenzini, P. Perego, R. Supino, F. Zunino, M.
Comporti, A. Pompella, Int. J. Cancer (2002) 740.
[9] T. Pelleg-Schulman, D. Gibson, J. Am. Chem. Soc. 123 (2001)
3171.
[10] C.K. Jorgensen, Inorg. Chem. 3 (1964) 1201.
[11] N.J. De Stefano, J.L. Burmeister, Inorg. Chem. 10 (1971) 998.
[12] For instance J. Chatt, B.T. Heaton, J. Chem. Soc. A (1968) 2745.
[13] R.G. Pearson, Inorg. Chem. 12 (1973) 712.
[14] R.G. Pearson, Chemical Hardness, Wiley VCH, Weinheim, 1997,
p. 15.
[15] R. Navarro, E. Urriolabeita, J. Chem. Soc., Dalton Trans. (1999)
4111.
[16] J.N. Harvey, K.M. Heslop, A.G. Orpen, P.G. Pringle, Chem.
Commun. (2003) 278.
[17] F.R. Hartley, S.G. Murray, A. Wilkinson, Inorg. Chem. 28 (1989)
549.
[18] J.A. Davies, F.R. Hartley, Chem. Rev. 81 (1981) 79.
[19] P.B. Braunstein, F. Naud, Angew. Chem. 113 (2001) 702.
[20] P.B. Braunstein, F. Naud, Angew. Chem., In. Ed. 40 (2001) 682.
[21] A. Pasini, G. Dꢀalfonso, C. Manzotti, M. Moret, S. Spinelli, M.
Valsecchi, Inorg. Chem. 33 (1994) 4140.
[22] A. Pasini, P. Perego, M. Balconi, M. Lupatini, J. Chem. Soc.,
Dalton Trans. (1995) 579.
The ligands of Scheme 1 are suitable for studying this
effect. More work is being planned to investigate this ef-
fect in more details.
[23] A. Pasini, M. Moroni, J. Chem. Soc., Dalton Trans. (1997) 1093.
[24] A. Pasini, S. Rizzato, D. De Cillis, Inorg. Chim. Acta 315 (2001)
196.
[25] L. Battan, M. Manassero, A. Pasini, Inorg. Chem. Commun. 4
(2001) 606.
[26] R. Ugo, F. Cariati, G. La Monica, Inorg. Synth. 11 (1968) 105.
[27] K.R. Laing, S.D. Robinson, M.F. Uttley, J. Chem. Soc., Dalton
Trans. (1974) 1205.
5. Supplementary material
[28] C. Dossi, A. Fusi, R. Psaro, Thermochim. Acta 236 (1994) 165.
[29] SAINT Reference Manual, Siemens Energy and Automation,
Madison, W1, 1994–1996.
Crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre, CCDC Nos.
231102 (3a Æ H2O) and 231103 (9a(NO3)). Copies of this
information can be obtained from the Director, CCDC,
12 Union Road, Cambridge CB2 1EZ, UK.
[30] G.M. Sheldrick, SADABS, Empirical Absorption Correction
Program, University of Gottingen, 1997.
[31] B.A. Frenz, Comput. Phys. 2 (1988) 42.
1
A file containing elemental analyses, Ir, H and 31P
[32] Crystallographic Computing 5, Oxford University Press, Oxford,
UK, 1991, Chapter 11, p. 126.
NMR spectra of all compounds can be obtained by
the author (A.P.) on request at his e-mail address.
[33] G.M. Sheldrick, SHELXS 86. Program for the solution of crystal
structures, 1985.
[34] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.
[35] A.L. Tan, P.M.N. Low, Z.-Y. Zhou, W. Zheng, B.-M. Wu,
T.C.W. Mak, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (1996)
2207.
Acknowledgements
[36] A.R. Khokhar, Q. Xu, Z.H. Siddik, J. Inorg. Biochem. 39 (1990)
117.
We thank Prof. A. Recchia, the University of Insu-
bria, for the mass spectrometry analysis of dihydrogen
evolution. This work has been financed by the Ministero
per lꢀIstruzione e la Ricerca (MIUR).
[37] H. Yuge, T.K. Miyamoto, Inorg. Chim. Acta 279 (1998) 105.
[38] N.W. Alcock, A.W.G. Platt, P. Pringle, J. Chem. Soc., Dalton
Trans. (1987) 2273.
[39] G.K. Anderson, G.J. Lumetta, Inorg. Chim. Acta 118 (1986) L9.
[40] C.K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National
Laboratory, Oak Ridge, TN, 1976.
[41] R. Colton, T.A. Stephenson, Polyhedron 3 (1984) 231.
[42] G. Exarchos, S.D. Robinson, J.W. Steed, Polyhedron 20 (2001)
2951.
References
[43] P.L. Watson, J.A. Albanese, J.C. Calabrese, D.W. Ovenall, R.G.
Smith, Inorg. Chem. 30 (1991) 4638.
[1] A. Shaver, M. El-khateeb, A.-M. Lebuis, Inorg. Chem. 40 (2001)
5288.
[44] W. Henderson, B.K. Nicholson, C.E.F. Rickard, Inorg. Chim.
Acta 320 (2001) 101.
`
[2] J.C. Bayon, C. Claver, A.M. Masdeu-Bulto, Coord. Chem. Rev.
193–195 (1999) 73.
[45] S. Okeya, Y. Fujiwara, S. Kawashima, Y. Hayashi, K. Isobe, Y.
Nakamura, H. Shimimura, Y. Kushi, Chem. Lett. (1992) 1823.
[3] A. Iretskii, H. Adams, J.J. Garcia, G. Picazo, P.M. Maitlis,
Chem. Commun. (1998) 61.