598
Lei Wang, Ruiren Tang, and Hua Yang
Tetrahedron 2003, 59, 10105−10146.
gen-bonding with the amide N−H or sulfamide N−H, the
enamine attacks the aldehyde on their face and leads to the
formation of the favored anti-diastereomer as the major
product. It’s suggest that N−H of pyrrolidine and at least
one of that between 2-N-methylpicolinamide and N-sul-
fonyl amide are vitally necessary to obtain desired enan-
tioselectivity, the hydrogen bond between sulfonamide S–O
and the aldehyde C–H along with the remained N−H pro-
moted the improvement of enantioselectivity and assured
high yield. It could be because that the pyrrolidin-2-ylm-
ethyl moiety played a role of electron-donating group which
possibly brought down the reactivity of the N−H of 2-N-
methylpicolinamide, thus the reactivity of entire catalysts
was lessened to some extent. Catalysts with unreduced proline
moiety or introduction of electrophilic substituent groups in the
α-position of (S)-pyrrolidin-2-ylmethanamine are being under
consideration in order to increase the reactivity of target catalysts.
In conclusion, we have designed and synthesized a series
of proline-derived compounds with Pyridine-2,6-dicarboxylic
acid moieties 12a−c as organocatalysts for asymmetric
aldol reaction, bearing both N-methylpicolinamin and N-
sulfonyl. These catalysts gave the aldol adduct in high
yield (up to 87%) and high enantioselectivity (up to 85% ee)
under mild conditions, they were also proved to have better
solubility in most of commonly used solvents. Conditions,
including temperature, additives and solvents were screened;
however original given condition was finally proved to be
most suitable for these catalysts. Conditions needed in this
system that room temperature and absence of additive
could be considered as an improvement since in several
3. Bella, M.; Gasperi, T. Synthesis 2009, 1583−1614.
4. Rutter, W. J. Fed. Proc. 1964, 23, 1248−1257.
5. Barbas, C. F. III. Angew. Chem. 2008, 47(1), 42−47.
6. List, B.; Lerner, R. A.; Barbas, C. F. III. J. Am. Chem.
Soc. 2000, 122, 2395−2396.
7. Ramachary, D. B.; Sakthidevi, R. Chemistry-A European
Journal 2009, 15, 4516−4522.
8. (a) Kotsuki, H.; Ikishima, H.; Okuyama, A. Heterocycles
2008, 75, 493−529. (b) Guillena, G.; Najera, C.; Ramon,
D. J. Tetrahedron: Asymmetry 2007, 18, 2249−2293.
9. (a) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305,
1752−1755. (b) Northrup, A. B.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2002, 124, 6798−6799.
10. (a) Dondoni, A.; Massi, A. Angew. Chem. 2008, 47, 4338–
4360. (b) Longbottom, D. A.; Franckevicius, V.; Kumarn,
S.; Oelke, A. J.; Wascholowski, V.; Ley, S. V. Aldrichim.
Acta 2008, 41, 3−11. (c) Enders, D.; Grondal, C. Angew.
Chem. 2007, 46, 1570−1581. (d) Lelias, G.; MacMillian,
D. W. C. Aldrichim. Acta 2006, 39, 79–87. (e) Houk, K.
N.; List, B. Eds. Acc. Chem. Res. 2004, 37, 487−631.
11. (a) Kotsuki, H.; Ikishima, H.; Okuyama, A. Heterocycles
2008, 75, 493–529. (b) Guillena, G.; Najera, C.; Ramon,
D. J. Tetrahedron: Asymmetry 2007, 18, 2249−2293.
12. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. III. J. Am.
Chem. Soc. 2001, 123, 5260−5267.
13. Orsini, F.; Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi,
P. Tetrahedron 1998, 44, 519−541.
14. (a) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urush-
ima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958−961.
(b) Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya,
T.; Shoji, M.; Hayashi, Y. Chem. Eur. J. 2007, 13, 10246−
10256. (c) Huang, J.; Zhang, X.; Armstrong, D. W. Angew.
Chem., Int. Ed. 2007, 46, 9073−9077.
15. Tellado, F. G.; Goswami, S.; Chang, S. K.; Geib, S. J.;
Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 7393−7394.
16. Tang, Z.; Cun, L. F.; Cui, X. Org. Lett. 2006, 8, 1263−1266.
17. Yang, H.; Rich, G. Carter. Synlett. 2010, 19, 2827−2838.
18. Yang, H.; Mahapatra, S.; Cheong, P. Y. H.; Carter, R. G.
J. Org. Chem. 2010, 75, 72−79.
o
cases the reaction temperature usually was below 0 C or
even lower,and additives were commonly necessary. What’s
more important, the regular relationship of dr and ee,
affected by solvent employed (DCE and DCM in this arti-
cle), is reported for the first time.
19. Zhang, Z. G.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38,
1187–1198.
Acknowledgments. Financial support from the National
Natural Science Foundation of China (No.21071152) is
gratefully acknowledged. And the publication cost of this
paper was supported by the Korean Chemical Society.
20. Liu, J.; Li, P. H.; Zhang, Y. C.; Ren, K.; Wang, L.; Wang,
G. W. Chirality 2010, 22, 432−441.
21. Xacobe, C. C.; Miquel, A. P. Adv. Synth Catal. 2011, 1,
113−124.
22. Carsten, S.; Uwe, M. Chem. Eur. J. 2005, 11, 1109−1118.
23. (a) Dong, F. S.; Chuan, X. Z.; Ju. X. W. Tetrahedron: Asym-
metry 2009, 20, 2390−2396. (b) Wu, C. L.; Fu, X. C.; Li,
S. Tetrahedron: Asymmetry 2011, 20, 1063−1073.
24. Michael, K.; Patrick, G. D.; Claire, M. L. Tetrahedron: Asym-
metry 2011, 22, 1423−1433.
REFERENCES
1. (a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39,
1615−1621. (b) Hajos, Z. G.; Parrish, D. R. Organic Syn-
theses; Wiley: New York, 1990; Vol. 7, pp 363−368. (c)
Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J. Am.
Chem. Soc. 2003, 125, 16−17.
25. Swapandeep, S. C.; Sarbjit, S.; Dinesh, M. Tetrahedron:
Asymmetry 2008, 19, 2276−2284.
26. Yang, H.; Rich, G. C.; Lev, N. Z. J. Am. Chem. Soc. 2008,
130, 9238–9239.
2. (a) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org.
Chem. 2007, 5969−5994. (b) Denissova, I.; Barriault, L.
Journal of the Korean Chemical Society