Communications
Organometallics, Vol. 20, No. 11, 2001 2129
alkylidyne carbon atom resonances were located at 296
ppm in the neopentylidyne complex and 337 ppm in the
(trimethylsilyl)methylidyne complex. Apparently the
R,R-dehydrogenation reaction, which is known to be
much faster for W than Mo in triamidoamine alkyl com-
plexes,2,6 becomes the dominant reaction pathway in
both [F3NMe]W(CH2CMe3)2 and [F3NMe]W(CH2SiMe3)2.
We conclude that the [(3,4,5-C6H2F3NCH2CH2)2-
NMe]2- ligand has significant potential in terms of
developing the chemistry of middle oxidation states of
Mo and W, because starting materials can be prepared
readily and because the [(3,4,5-C6H2F3NCH2CH2)2-
NMe]2- ligand appears to be less susceptible to nucleo-
philic attack than the pentafluorophenyl ring in the
[(C6F5NCH2CH2)2NMe]2- ligand. We are interested in
elucidating the mechanisms of the organometallic reac-
tions reported here and determining to what extent
chemistry at the R-carbon can be distinguished from
chemistry at the â-carbon in alkyls that contain â-pro-
tons. We also are interested in developing high-yield
routes to species that contain bound dinitrogen in order
to further explore the chemistry of [(3,4,5-C6H2F3NCH2-
CH2)2NMe]2- complexes with respect to dinitrogen
fixation. Although a variety of complexes that contain
“diamido/donor” ligands have been reported by other
laboratories,12,31-47 those reported in this work and in
a previous communication11 appear to be the only ones
so far that contain Mo or W.
F igu r e 2. Thermal ellipsoid plot (30% probability level)
of the structure of {[F3NMe]Mo(CSiMe3)}2 (ligand backbone
and aryl rings omitted for clarity). Selected bond distances
(Å) and angles (deg): Mo(1)-C(1) ) 2.203(10), Mo(1)-
C(1A) ) 2.141(8), Mo(1)-Mo(1A) ) 2.4152(15), Mo(1)-N(1)
) 2.055(7), Mo(1)-N(2) ) 2.306(7), Mo(1)-N(3) ) 2.093(7);
N(1)-Mo(1)-N(3) ) 127.3(3), C(1)-Mo-N(1) ) 93.1(3),
C(1A)-Mo(1)-N(1) ) 109.9(3), C(1)-Mo(1)-C(1A) )
112.5(3), C(1)-Mo(1)-N(2) ) 161.5(3), C(1A)-Mo(1)-N(2)
) 86.0(3), Si(1)-C(1)-Mo(1) 114.1(4), Si(1)-C(1)-Mo(1A)
) 177.9(6). Crystal data: C42H48N6F12Si2Mo2, monoclinic,
P21/c, Z ) 2, a ) 10.818(2) Å, b ) 16.850(3) Å, c ) 14.216(2)
Å, â ) 104.610(3)°, R1 ) 0.0650, wR2 ) 0.1425 (all data).
Ack n ow led gm en t. R.R.S. thanks the National Sci-
ence Foundation (Grant No. CHE 9988766) and the
National Institutes of Health (Grant No. GM 31978) for
research support. F.V.C. thanks Peter J . Bonitatebus,
J r., for assistance in X-ray crystallography.
Su p p or tin g In for m a tion Ava ila ble: Text giving experi-
mental details, labeled ORTEP diagrams, and tables of crystal
data and structure refinement details, atomic coordinates,
bond lengths and angles, and anisotropic displacement pa-
rameters for [F3NMe]Mo(CH2CMe3)(CCMe3) and {[F3NMe]-
Mo(CSiMe3)}2. This material is available free of charge via the
Internet at http://pubs.acs.org.
core are rare.30 To our knowledge there is no published
example of a compound that contains the Mo2(µ-CR)2
core or any compound that contains a W2(µ-CSiMe3)2
core in which the W(1)-C-Si and W(2)-C-Si angles
are not approximately equal. Therefore, at this stage
we do not know whether the linear form of the µ-CSiMe3
ligands found in {[F3NMe]Mo(CSiMe3)}2 is a character-
istic of Mo2(µ-CR)2 compounds or a feature of M2(µ-CR)2
compounds (M ) Mo, W) that contain a diamido/donor
ligand. The different modes of decomposition of [F3NMe]-
Mo(CH2SiMe3)2 and the proposed intermediate [F3NMe]-
Mo(CH2CMe3)2 are striking.
OM0100176
(31) Friedrich, S.; Schubart, M.; Gade, L. H.; Scowen, I. J .; Edwards,
A. J .; McPartlin, M. Chem. Ber./ Recl. 1997, 130, 1751.
(32) Herrmann, W. A.; Denk, M.; Albach, R. W.; Behm, J.; Herdtweck,
E. Chem. Ber. 1991, 124, 683.
(33) Gue´rin, F.; Del Vecchio, G.; McConville, D. H. Polyhedron 1998,
17, 917.
(34) Gue´rin, F.; McConville, D. H.; Vittal, J . J .; Yap, G. A. P.
Organometallics 1998, 17, 5172.
(35) Fryzuk, M. D.; Love, J . B.; Rettig, S. J . Organometallics 1998,
17, 846.
Treatment of [Et3NH]{[F3NMe]WCl3} with 3 equiv of
either Me3CCH2MgCl or Me3SiCH2MgCl yielded five-
coordinate diamagnetic alkylidyne complexes of the type
[F3NMe]W(CH2R)(CR) (R ) CMe3 or SiMe3, eq 4). The
[Et3NH]{[F3NMe]WCl3} 3RCH MgCl8
(36) Clark, H. C. S.; Cloke, F. G. N.; Hitchcock, P. B.; Love, J . B.;
Wainwright, A. P. J . Organomet. Chem. 1995, 501, 333.
(37) Cloke, F. G. N.; Hitchcock, P. B.; Love, J . B. J . Chem. Soc.,
Dalton Trans. 1995, 25.
(38) Ziniuk, Z.; Goldberg, I.; Kol, M. Inorg. Chem. Commun. 1999,
2, 549.
2
THF,
-30 to 22 °C
[F3NMe]W(CH2R)(CR)
(4)
R ) CMe3, SiMe3
(39) J eon, Y.-M.; Park, S. J .; Heo, J .; Kim, K. Organometallics 1998,
17, 3161.
(40) Horton, A. D.; de With, J .; van der Linden, A. J .; van de Weg,
H. Organometallics 1996, 15, 2672.
(41) Horton, A. D.; de With, J . Chem. Commun. 1996, 1375.
(42) Aoyagi, K.; Gantzel, P. K.; Kalai, K.; Tilley, T. D. Organome-
tallics 1996, 15, 923.
(24) Chisholm, M. H.; Huffman, J . C.; Heppert, J . A. J . Am. Chem.
Soc. 1985, 107, 5116.
(25) Chisholm, M. H.; Thornton, P.; Huffman, J . C.; Heppert, J . A.
J . Chem. Soc., Chem. Commun. 1985, 1466.
(26) Chisholm, M. H.; Heppert, J . A. Adv. Organomet. Chem. 1986,
26, 97.
(27) Chisholm, M. H.; Heppert, J . A.; Kober, E. M.; Lichtenberger,
D. L. Organometallics 1987, 6, 1065.
(28) Chisholm, M. H.; Ontiveros, C. D. Polyhedron 1988, 7, 1015.
(29) Chisholm, M. H.; Heppert, J . A.; Huffman, J . C.; Ontiveros, C.
D. Organometallics 1989, 8, 976.
(43) Male, N. A. H.; Thornton-Pett, M.; Bochmann, M. J . Chem. Soc.,
Dalton Trans. 1997, 2487.
(44) Kempe, R. Angew. Chem., Int. Ed. 2000, 39, 468.
(45) Armistead, L. T.; White, P. S.; Gagne, M. R. Organometallics
1998, 17, 216.
(46) Tinkler, S.; Deeth, R. J .; Duncalf, D. J .; McCamley, A. Chem.
Commun. 1996, 2623.
(30) Liu, A. H.; Murray, R. C.; Dewan, J . C.; Santarsiero, B. D.;
Schrock, R. R. J . Am. Chem. Soc. 1987, 109, 4282.
(47) Tsuie, B.; Swenson, D. C.; J ordan, R. F.; Petersen, J . L.
Organometallics 1997, 16, 1392.