J. Blanco-Urgoiti et al. / Tetrahedron Letters 42 (2001) 3315–3317
3317
the TBS-protected compound 4b, which reacted with
low diastereoselectivity. We can explain these results by
assuming that the electron pairs of the oxygen present
in all the substituents coordinate with the cobalt in a
similar fashion to that for the directed Pauson–Khand
reaction described by Kraft.10 This coordination may
neither occur in the case of compound 4b, due to the
bulky substituent, nor in compounds 3, due to the
proximity of the coordinating group to the double bond
that avoids complexation. We are currently investigat-
ing the structure of the cobalt complexes of these
starting materials and extending this methodology to
substrates bearing other coordinating groups.
Ingate, S. T.; Marco-Contelles, J. Org. Proc. Prep. Int.
1998, 123; (d) Shore, N. E. In Comprehensive Organo-
metallic Chemistry II; Hegedus, L. S., Ed.; Pergamon
Press: Oxford, 1995; Vol. 12, p. 703.
2. For some recent examples of natural products syntheses
using Pauson–Khand reactions, see: (a) Brummond, K.
M.; Lu, J.; Petersen, J. J. Am. Chem. Soc. 2000, 122,
4915; (b) Brummond, K. M.; Lu, J. J. Am. Chem. Soc.
1999, 121, 5087; (c) Kowalczyk, B. A.; Shmith, T. C.;
Dauben, W. G. J. Org. Chem. 1998, 63, 1379.
3. (a) Sugihara, T.; Yamada, M.; Yamaguchi, M.;
Nishizawa, M. Synlett 1999, 771; (b) Sugihara, T.;
Yamaguchi, M. Synlett 1998, 1384; (c) Sugihara, T.;
Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2801.
4. Pe´rez-Serrano, L.; Casarrubios, L.; Dom´ınguez, G.;
Pe´rez-Castells, J. Org. Lett. 1999, 1, 1187.
5. Pe´rez-Serrano, L.; Blanco-Urgoiti, J.; Casarrubios, L.;
Dom´ınguez, G.; Pe´rez-Castells, J. J. Org. Chem. 2000, 65,
3513.
In an attempt to verify that the distance of the coordi-
nating group to the double bond is crucial to achieve
diastereoselectivity, we prepared compound 8 following
the method of Scheme 2 and submitted it to the exper-
imental conditions described before. The results showed
no diastereoselectivity at room temperature, and the
formation of the naphthalene 7 under refluxing condi-
tions. Again, the hydroxy group seems to be too close
to the alkene to allow coordination to the cobalt.
6. Pe´rez-Serrano, L.; Gonza´lez-Pe´rez, P.; Casarrubios, L.;
Dom´ınguez, G.; Pe´rez-Castells, J. Synlett 2000, 1303.
7. Bergman, J.; Venemalm, L. J. Org. Chem. 1992, 57, 2495.
8. For experimental conditions, see Ref. 5.
In conclusion, indenes, tetralines and a naphthalene can
be prepared by diastereoselective Pauson–Khand reac-
tion of aromatic enynes. The reactions are achieved if
appropriate coordinating groups are situated at a suit-
able distance from the alkene moiety.
9. Spectroscopic data for 6a and 7. Compound 6a: Yellow
oil; 1H NMR (CDCl3) l 1.79 (td, 1H, J1=13.7 Hz,
J2=3.3 Hz), 2.16 (dd, 1H, J1=18.1 Hz, J2=3.3 Hz),
2.38–2.44 (m, 1H), 2.73 (dd, 1H, J1=18.1 Hz, J2=6.6
Hz), 3.17 (bs, 1H), 3.52–3.58 (m, 1H), 4.92–4.93 (m, 1H),
6.36 (d, 1H, J=2.2 Hz), 7.36–7.40 (m, 1H), 7.44–7.46 (m,
2H), 7.64 (d, 1H, J=7.7 Hz); 13C NMR (CDCl3) l 208.5,
174.9, 139.1, 131.6, 130.5, 129.1, 128.5, 126.6, 124.0, 66.9,
41.9, 37.1, 33.7; IR (neat) w 3390, 2910, 1690, 1665, 1595
cm−1. Compound 7: Colorless oil; 1H NMR (CDCl3) l
2.47 (s, 2H), 2.58 (s, 2H), 7.28 (d, 1H, J=8.2 Hz), 7.39 (t,
1H, J=6.6 Hz), 7.47 (dt, 1H, J1=6.6 Hz, J2=1.1 Hz),
7.60 (d, 1H, J=8.8 Hz), 7.78 (d, 1H, J=7.7 Hz), 8.01 (d,
1H, J=8.8 Hz); 13C NMR (CDCl3) l 205.2, 133.0, 132.7,
132.2, 131.1, 128.9, 128.3, 125.7, 125.6, 124.4, 123.6, 20.7,
Acknowledgements
This work was supported by grants from the DGES
(MEC-Spain, grant PB98-0053) and the Universidad
San Pablo-CEU (grant 2/99).
References
14.4; IR (neat) w 3050, 2920, 1690, 1600 cm−1
.
10. Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibelmann,
S.; Van Pelt, C. E. J. Am. Chem. Soc. 1993, 115, 7199 and
references cited therein.
1. For recent reviews, see: (a) Brummond, K. M.; Kent, J.
L. Tetrahedron 2000, 56, 3263; (b) Geis, O.; Schmalz,
H.-G. Angew. Chem., Int. Ed. Engl. 1998, 37, 911; (c)
.
.