A. V. Malko6 et al. / Tetrahedron Letters 42 (2001) 3045–3048
3047
following acronyms: PINPHOS for (+)-8, (+)- and (−)-
CANPHOS for (+)-15 and (−)-21, respectively, and
iso-PINPHOS for (−)-26.
1O2, hν
SeO2
TPP
(cat.)
O
(−)-1
(+)-22
(−)-23
1. 5, AcONH4
Acknowledgements
2. BuLi, then MeI
The authors would like to thank the University of
Glasgow for generous financial support and the Con-
siglio Nazionale delle Ricerche, Rome, Italy, for sup-
port to M.B. (Short Term Mobility Program).
Ph2PK
N
N
R
F
Ph2P
(−)-24, R = H
(−)-26
(−)-25, R = Me
References
Scheme 4. TPP=tetraphenylporphine.
1. For recent reviews, see: (a) Ghosh, A. K.; Mathiyanan,
P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1; (b)
Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33,
325; (c) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000,
33, 336.
2. For an overview, see: Hayashi, T. Acta Chem. Scand.
1996, 50, 259.
3. (a) Alcock, N. W.; Brown, J. M.; Hulmes, D. I. Tetra-
hedron: Asymmetry 1993, 4, 743; (b) Brown, J. M.; Hul-
mes, D. I.; Guiry, P. J. Tetrahedron 1994, 50, 4493.
PhOTf
(dba)2Pd, L*
Ph
i-Pr2NEt, THF
70 oC, 48 h
O
O
27
(S )-(−)-28
Scheme 5. Tf=CF3SO2.
&
4. (a) Vyskocˇil, S.; Smrcˇina, M.; Hanusˇ, V.; Pola´sˇek, M.;
Kocˇovsky´, P. J. Org. Chem. 1998, 63, 7738; (b)
days; 98%).23 On Kro¨hnke annulation (5, AcONH4,
AcOH, 90°C, 5 h), (+)-22 provided (−)-24 (73%), whose
deprotonation (n-BuLi, THF, −30°C, 1 h), followed by
stereoselective methylation (MeI, −50°C, 4 h), afforded
(−)-25 (63%). On substitution reaction (Ph2PH, t-
BuOK, 18-crown-6, THF, rt, 48 h), the latter fluoro
derivative afforded ligand (−)-26 (55%).
&
Kocˇovsky´, P.; Vyskocˇil, S.; C´ısarˇova´, I.; Sejbal, J.;
Tisˇlerova´, I.; Smrcˇina, M.; Lloyd-Jones, G. C.; Stephen,
S. C.; Butts, C. P.; Murray, M.; Langer, V. J. Am. Chem.
Soc. 1999, 121, 7714; (c) Yin, J.; Buchwald, S. L. J. Am.
Chem. Soc. 2000, 122, 12051 and references cited therein;
(d) Wang, Y.; Guo, H.; Ding, K. Tetrahedron: Asymme-
try 2000, 11, 4153.
5. Noyori, R. Asymmetric Catalysis in Organic Synthesis;
Wiley & Sons: New York, 1994.
To assess the efficacy of the new P,N-ligands 8, 15, 21,
and 26, we set out to investigate Heck addition24 of
PhOTf to dihydrofuran 27 (Scheme 5).24 Using solvent
and base variation, we have identified i-Pr2NEt in THF
(70°C, 2 days) as the most suitable system with high
enantioselectivities and minimized formation of the side
products.
6. For the first (phosphinoaryl)pyridine ligand, see: Ito, K.;
Kashiwagi, R.; Iwasaki, K.; Katsuki, T. Synlett 1999,
1563.
7. (a) Malkov, A. V.; Bella, M.; Langer, V.; Kocˇovsky´, P.
Org. Lett. 2000, 2, 3047; (b) Malkov, A. V.; Baxendale, I.
R.; Fawcett, J.; Russel, D. R.; Langer, V.; Mansfield, D.
J.; Valko, M.; Kocˇovsky´, P. Organometallics 2001, 20,
673.
Ligand (+)-8 induced the formation of (S)-(−)-28 with
59% ee (45% yield); (+)-15 proved to be more enan-
tioselective, giving (S)-(−)-28 of 70% ee, while its quasi-
enantiomer (−)-21 produced the opposite enantiomer
(R)-(+)-28 (69% ee). Reversal of product configuration
was also observed for (−)-26, which furnished (R)-(+)-
28 (88% ee; 68% yield).25 Unlike with BINAP,24c only
slight isomerization (ꢀ1%) to the more stable 4,5-iso-
mer was observed.
8. For an overview of the syntheses of chiral bipyridine
ligands, see: (a) Knof, U.; von Zelewsky, A. Angew.
Chem., Int. Ed. 1999, 38, 303. For the most recent report,
see: (b) Lo¨tscher, D.; Rupprecht, S.; Stoeckli-Evans, H.;
von Zelewsky, A. Tetrahedron: Asymmetry 2000, 11,
4341.
9. (a) Chiral GC revealed the starting (−)-b-pinene to be of
95% ee; (b) (+)-3-Carene was of 93% ee (by GC); (c)
(+)-2-Carene had [h]D +81 (c 6.0, EtOH); Aldrich gives
[h]D +90 2 (c, 6.0, EtOH).
10. (a) Grimshaw, N.; Grimshaw, J. T.; Juneja, H. R. J.
Chem. Soc., Perkin Trans. 1 1972, 50; (b) Brown, H. C.;
Weissman, S. A.; Perumal, P. T.; Dhokte, U. P. J. Org.
Chem. 1990, 55, 1217.
In conclusion, we have synthesized modular (phosphino-
aryl)pyridine ligands (+)-8, (+)-15, (−)-21, and (−)-26
from the inexpensive chiral pool, each in five steps or
less. While (+)-15 and (−)-21 are quasi-enantiomers, 8
and 26 could be prepared in both enantiomeric forms.
Heck addition (2728) appears to be a promising
application (88% ee)25 and will merit further investiga-
tion.26 For the sake of practicality, we propose the
11. For the procedure, see Ref. 10b and: Gianini, M.; von
Zelewsky, A. Synthesis 1996, 702.
12. For the methodology, see: (a) Kro¨hnke, F. Chem. Ber.
1937, 70, 864. For an overview, see: (b) Kro¨hnke, F.
Synthesis 1976, 1.