J. Weng et al. / Tetrahedron Letters 54 (2013) 1205–1207
1207
Team of Science and Technology in Zhejiang Province
(2010R50018-06).
HN
O
O
Pd(OAc)2
Supplementary data
NH O
AcOH
Cyclopalladation
Supplementary data associated with this article can be found, in
Ac
HN
O
O
2
the
online
version,
at
Pd
Reductive
elimination
I
TBHP
AcOH
H
O
O
References and notes
HN
O
TBHP
Pd
Oxidation
OAc
1. (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335–344; (b) Chen, X.; Engle, K. M.; Wang,
D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094–5115; (c) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655; (d) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147–1169; (e) Bars, J. L.; Muzart, J. Chem.
Rev. 2011, 111, 1170–1214; (f) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215–1292.
2. (a) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120–3123;
(b) Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Zhou, M.-B.; Wei, W.-T.; Deng, G.-
B.; Yin, D.-L.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900–8902; (c) Park, J.; Park,
E.; Kim, A.; Lee, Y.; Chi, K.-W.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Org. Lett. 2011,
13, 4390–4393; (d) Colbon, P.; Ruan, J.; Purdie, M.; Mulholland, K.; Xiao, J. Org.
Lett. 2011, 13, 5456–5459.
II
Putative Pd(III) or
Pd(IV) intermediate
Scheme 2. Plausible mechanism of acylation between acetanilide and toluene.
products were isolated in good to excellent yields when employing
para-, meta-, and ortho-xylenes as substrates. Good yield was also
observed for the reaction of 4-chlorotoluene, but low yield was
for 3-bromotoluene. Noteworthy, the reactions of methylated het-
eroaromatic compounds (2-methylfuran, 2-methylthiophene, 2-
methylpyridine, 3-methylpyridine, and 4-methylpyridine) failed
to give the corresponding products.
To probe the mechanism of this reaction, benzaldehyde was
employed as acylating reagent to react with acetanilide in the pres-
ence of 20% palladium acetate by using 4.0 equiv of TBHP as oxi-
dant. When toluene was used as solvent, the corresponding
diaryl ketone was obtained in 89% yield. If benzaldehyde was used
as solvent instead of toluene, the desired product was also ob-
tained in 84% yield (Scheme 1). The phenomenon was consistent
with the reports by Li and others.4
On the basis of the above results and the earlier references
reported,4 a tentative mechanism of this transformation was de-
picted in Scheme 2. The oxidation of toluene produced benzalde-
hyde, which was detected in the reaction system and was
consistent with the observation by Dismukes.8d So the sp3 C–H
bonds of toluene could be oxidized in situ to give benzaldehyde by
tert-butyl hydroperoxide as oxidizing reagent and subsequently re-
acted with palladacycle intermediate I9 (formed through C–H func-
tionalization of anilide) to generate intermediate II.10 Followed by
reductive elimination of II, the desired product was obtained. After
regeneration of the catalyst Pd(OAc)2, catalytic cycle was fulfilled.
In conclusion, we have developed a novel approach in the syn-
thesis of diaryl ketone via palladium-catalyzed direct oxidative
o-acylation of anilides by using commercially available toluenes
as acylation reagents. Good to excellent yields were observed in
the reactions. Further extension of this methodology to other
acylation reaction is ongoing in the lab.
3. Wu, W.; Su, W. J. Am. Chem. Soc. 2011, 133, 11924–11927.
4. (a) Baslé, O.; Bidange, J.; Shuai, Q.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 1145–
1149; (b) Chan, C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org. Lett. 2010, 12,
3926–3929; (c) Wu, Y.; Li, B.; Mao, F.; Li, X.; Kwong, F. Y. Org. Lett. 2011, 13,
3258–3261; (d) Li, C.; Wang, L.; Li, P.; Zhou, W. Chem. Eur. J. 2011, 17, 10208–
10212.
5. Fang, P.; Li, M.; Ge, H. J. Am. Chem. Soc. 2010, 132, 11898–11899.
6. Xiao, F.; Shuai, Q.; Zhao, F.; Baslé, O.; Deng, G.; Li, C.-J. Org. Lett. 2011, 13, 1614–
1617.
7. (a) Huang, Y.-L.; Chen, C.-C.; Chen, Y.-J.; Huang, R.-L.; Shieh, B.-J. J. Nat. Prod.
2001, 64, 903–906; (b) Zhang, C.; Ondeyka, J. G.; Herath, K. B.; Guan, Z.; Collado,
J.; Platas, G.; Plaez, F.; Leavitt, P. S.; Gurnett, A.; Nare, B.; Liberator, P.; Singh, S.
B. J. Nat. Prod. 2005, 68, 611–613; (c) Deng, Y.; Chin, Y.-W.; Chai, H.; Keller, W.
J.; Kinghorn, A. D. J. Nat. Prod. 2007, 70, 2049–2052; (d) Shim, S. H.; Baltrusaitis,
J.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. 2011, 74, 395–401; (e) Pettit, G. R.;
Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J. Med. Chem.
2000, 43, 2731–2737; (f) Khanapure, S. P.; Garvey, D. S.; Young, D. V.; Ezawa,
M.; Earl, R. A.; Gaston, R. D.; Fang, X.; Murty, M.; Martino, A.; Shumway, M.;
Trocha, M.; Marek, P.; Tam, S. W.; Janero, D. R.; Letts, L. G. J. Med. Chem. 2003,
46, 5484–5504; (g) Hsu, N.; Cai, D.; Damodaran, K.; Gomez, R. F.; Keck, J. G.;
Laborde, E.; Lum, R. T.; Macke, T. J.; Martin, G.; Schow, S. R.; Simon, R. J.; Villar,
H. O.; Wick, M. M.; Beroza, P. J. Med. Chem. 2004, 47, 4875–4880; (h) Higuchi,
H.; Yamashita, T.; Horie, K.; Mita, I. Chem. Mater. 1991, 3, 188–194; (i)
Mejiritski, A.; Sarker, A. M.; Wheaton, B.; Neckers, D. C. Chem. Mater. 1997, 9,
1488–1494.
8. (a) Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
1997, 62, 6810–6813; (b) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647–
3650; (c) Pan, J.-F.; Chen, K. J. Mol. Catal. A: Chem. 2001, 176, 19–22; (d) Carrell,
T. G.; Cohen, S.; Dismukes, G. C. J. Mol. Catal. A: Chem. 2002, 187, 3–15; (e) Hirai,
N.; Sawatari, N.; Nakamura, N.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2003, 68,
6587–6590; (f) Si, T. K.; Chowdhury, K.; Mukherjee, M.; Bera, D. C.;
Bhattacharyya, R. J. Mol. Catal. A: Chem. 2004, 219, 241–247; (g) Würtele, C.;
Sander, O.; Lutz, V.; Waitz, T.; Tuczek, F.; Schindler, S. J. Am. Chem. Soc. 2009,
131, 7544–7545; (h) Lucas, H. R.; Li, L.; Sarjeant, A. A. N.; Vance, M. A.; Solomon,
E. I.; Karlin, K. D. J. Am. Chem. Soc. 2009, 131, 3230–3245.
9. (a) Omae, I. Chem. Rev. 1979, 79, 287–321; (b) Horino, H.; Inoue, N. J. Org. Chem.
1981, 46, 4416–4422; (c) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984,
106, 5759–5760.
10. (a) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234–11241; (b)
Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974–
10983; (c) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302–309; (d) Powers, D.
C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131,
17050–17051.
Acknowledgments
This work is supported by the National Natural Science Founda-
tion of China (No. 30900959, 20702051) and the Key Innovation