Helvetica Chimica Acta Vol. 87 (2004)2965
112.47; 106.87; 101.65; 92.20; 91.42; 91.28; 90.50; 79.58; 79.33; 71.46; 69.89; 69.67; 68.87; 68.07; 64.21; 53.39;
31.91; 31.83; 29.68; 29.63; 29.41; 29.36; 29.23; 26.10; 26.05; 26.01; 25.98; 25.93; 22.66; 14.12; 14.07. MALDI-TOF-
MS: 4728.5 (M , C334H330O24 ; calc. 4728.3). Anal. calc. for C334H330O24: C 84.84, H 7.03; found: C 84.52, H 7.31.
Photovoltaic Devices. The substrates utilized were always 20 Â 20 mm ITO-coated glass slices. In all cases
and prior to film deposition, substrates were cleaned ultrasonically by repeating at least twice a procedure
including successive washing steps with 35% H2O2 soln./ammonia/H2O solution 1 :1:5 (v/v), EtOH, and
acetone. Just before application of the active layer, every substrate was spin-coated by a layer of PEDOT-PSS
(Baytron P, Bayer AG)as a hole injection/transport layer resulting in a thickness of ca. 70 nm, as measured by a
Dektak-3130 surface profiler. Subsequently they were left to dry at 10À6 Torr for several hours at an elevated
temperature. Active-layer films were fabricated by spin-coasting (ca. 1000 rpm)from 2% ( w/w)CHCl solns.
3
(thickness ca. 100 nm as measured by a Dektak-3130 surface profiler). Finally, Al electrodes were vapor-
deposited at a dynamic vacuum around 3 ¥ 10À7 Torr on the top of the structure, with a deposition rate of 0.4 nm/
s, to a thickness of 100 nm. I/V curves were measured with a Keithley-236-source measure unit, while an Oriel-
60100 xenon lamp and a CVI-Digikrom-120 monochromator provided illumination through the ITO side. In
forward bias, the ITO electrode was wired as the anode. The impedance spectroscopy was carried out with a
Solartron-SI1260 impedance/gain phase analyzer. A standard calibrated silicon photodiode was used to record
the action photovoltaic spectra. All measurements were performed in a glovebox under N2.
Morphology Characterization. The compounds were spin-coated from 2% (w/w)CHCl solns. on cleaved
3
mica and examined by AFM by using a Digital Nanoscope III. Silicon cantilevers were used to acquire
topography images in the tapping mode at r.t. under ambient conditions.
This work was supported by the CNRS, the French Ministry of Research (ACI Jeunes Chercheursto J.-F. N.),
the European Community (Contract N8 HPRN-CT-2002-00171), and ECODEV (ADEME-CNRS). We further
thank L. Oswald for technical help, M. Schmitt for the NMR measurements, and R. Hueber for the mass spectra.
REFERENCES
[1] J.-F. Nierengarten, J.-F. Eckert, J.-F. Nicoud, L. Ouali, V. Krasnikov, G. Hadziioannou, Chem. Commun.
1999, 617.
[2] J.-F. Nierengarten, Sol. Energy Mater. Sol. Cells 2004, 83, 187.
[3] J.-F. Eckert, J.-F. Nicoud, J.-F. Nierengarten, S.-G. Liu, L. Echegoyen, F. Barigelletti, N. Armaroli, L. Ouali,
V. Krasnikov, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 7467; E. Peeters, P. A. van Hal, J. Knol, C. J.
Brabec, N. S. Sariciftci, J. C. Hummelen, R. A. J. Janssen, J. Phys. Chem. B 2000, 104, 10174; N. Armaroli, F.
Barigelletti, P. Ceroni, J.-F. Eckert, J.-F. Nicoud, J.-F. Nierengarten, Chem. Commun. 2000, 599; G. Accorsi,
N. Armaroli, J.-F. Eckert, J.-F. Nierengarten, Tetrahedron Lett. 2002, 43, 65; N. Armaroli, G. Accorsi, J.-P.
Gisselbrecht, M. Gross, V. Krasnikov, D. Tsamouras, G. Hadziioannou, M. J. Gomez-Escalonilla, F. Langa,
J.-F. Eckert, J.-F. Nierengarten, J. Mater. Chem. 2002, 12, 2077; M. J. Gomez-Escalonilla, F. Langa, J.-M.
Rueff, L. Oswald, J.-F. Nierengarten, Tetrahedron Lett. 2002, 43, 7507; D. M. Guldi, C. Luo, A. Swartz, R.
¬
Gomez, J. L. Segura, N. Martin, C. Brabec, N. S. Sariciftci, J. Org. Chem. 2002, 67, 1141; M. Gutierrez-Nava,
H. Nierengarten, P. Masson, A. Van Dorsselaer, J.-F. Nierengarten, Tetrahedron Lett. 2003, 44, 3043.
[4] M. Maggini, G. Possamai, E. Menna, G. Scorrano, N. Camaioni, G. Ridolfi, G. Casalbore-Miceli, L. Franco,
M. Ruzzi, C. Corvaja, Chem. Commun. 2002, 2028; N. Negishi, K. Yamada, K. Takimiya, Y. Aso, T. Otsubo,
Y. Harima, Chem. Lett. 2003, 32, 404.
[5] F. Effenberger, G. Grube, Synthesis 1998, 1372; Y. Obara, K. Takimiya, Y. Aso, T. Otsubo, Tetrahedron Lett.
2001, 42, 6877; S.-G. Liu, L. Shu, J. Rivera, H. Liu, J.-M. Raimundo, J. Roncali, A. Gorgues, L. Echegoyen, J.
Org. Chem. 1999, 64, 4884.
[6] T. Gu, J.-F. Nierengarten, Tetrahedron Lett. 2001, 42, 3175; T. Gu, D. Tsamouras, C. Melzer, V. Krasnikov,
J.-P. Gisselbrecht, M. Gross, G. Hadziioannou, J.-F. Nierengarten, ChemPhysChem 2002, 3, 124.
[7] Y. Shirai, Y. Zhao, L. Cheng, J. M. Tour, Org. Lett. 2004, 6, 2129; T. Gu, J. K. Whitesell, M. A. Fox, J. Org.
Chem. 2004, 69, 4075.
[8] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
[9] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769.
[10] J. S. Schumm, D. L. Pearson, J. M. Tour, Angew. Chem., Int. Ed. 1994, 33, 1360; J. M. Tour, Chem. Rev. 1996,
96, 537; J. M. Tour, Acc. Chem. Res. 2000, 33, 791.
[11] U. Ziener, A. Godt, J. Org. Chem. 1997, 62, 6137.
[12] M. Prato, M. Maggini, Acc. Chem. Res. 1998, 31, 519.