Journal of the American Chemical Society
Communication
two different pathways: the first involving the discrete formation
of a Ni(I) complex and a bromine radical (Scheme 3B), and the
other involving a concerted four-centered transition structure
(Scheme 3C). This proposal is consistent with a variety of our
experimental observations. Specifically, the weakness of the H−
Br bond provides only a mild thermodynamic driving force for
abstraction of an H atom from THF, consistent with the
measured KIE and our limited ability to engage stronger C−H
bonds in this reaction.
for iridium salts used in the preparation of the photoredox
catalysts. Dr. Rakesh Kohli (University of Pennsylvania) is
acknowledged for collection of HRMS data.
REFERENCES
■
(1) (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011,
40, 102. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322. (c) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010,
2, 527. (d) Reckenthaler, M.; Griesbeck, A. G. Adv. Synth. Catal. 2013,
355, 2727.
A mechanism proceeding through a Ni(III) intermediate
would find more direct precedent in Nocera’s report, but the
failure of strongly oxidizing photocatalysts to promote the
desired reactivity and the ability of the chemistry to proceed in
the absence of any oxidant under UV-irradiation lead us to
disfavor the involvement of Ni(III) as the major reaction
pathway. We are presently pursuing theoretical and spectro-
scopic support for the proposed pathway. In any event, it appears
certain that a previously unknown or underutilized mechanism is
at work in these transformations. We anticipate that this pathway
could prove impactful for the development of mild, nondirected
C−H functionalization reactions. Notably, previous photo-
redox/nickel dual catalysis C−H functionalization reactions
have relied on proximity to a redox active heteroatom to induce
activation of the C−H bond.5,16 Utilizing the protocol described,
we are able to leverage a HAT manifold to activate C−H bonds
that are unreactive in the SET regime.17 Further understanding
of the operative mechanism should provide opportunities to
extend the reaction to less reactive C−H bonds and/or new
halide or pseudohalide partners.
(2) (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(b) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40,
5068. (c) Chen, X.; Engle, K. E.; Wang, D.−H.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2009, 48, 5094. (d) Daugulis, O.; Do, J.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074. (e) Mkhalid, I. A. I.; Barnard, J. H.; Marder,
T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(3) (a) Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134,
169. (b) Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc.
2012, 134, 13573. (c) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.;
Chatani, N. J. Am. Chem. Soc. 2011, 133, 14952. (d) Aihara, Y.; Chatani,
N. J. Am. Chem. Soc. 2013, 135, 5308. (e) Aihara, Y.; Chatani, N. J. Am.
Chem. Soc. 2014, 136, 898. (f) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew.
Chem., Int. Ed. 2013, 52, 4453. (g) Liu, D.; Li, Y.; Qi, X.; Liu, C.; Lan, Y.;
Lei, A. Org. Lett. 2015, 17, 998.
(4) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345,
433. (b) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am.
Chem. Soc. 2015, 137, 2195. (c) Karakaya, I.; Primer, D. N.; Molander,
G. A. Org. Lett. 2015, 17, 3294. (d) Ryu, D.; Primer, D. N.; Tellis, J. C.;
Molander, G. A. Chem. - Eur. J. 2016, 22, 120. (e) Amani, J.; Sodagar, E.;
Molander, G. A. Org. Lett. 2016, 18, 732.
(5) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terret, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437.
In conclusion, mild conditions for an unprecedented, Ni-
catalyzed C(sp3)−H arylation are achieved through the use of an
Ir photocatalyst, substoichiometric benzophenone-derivative
additive, and visible light. A variety of aryl- and heteroaryl
halides are tolerated, including those containing weak C(sp3)−H
bonds. Background reactivity in the absence of the presumed co-
catalyst led to further mechanistic studies. These experiments
suggest a mechanism involving an energy-transfer pathway in
which an excited-state nickel complex initiates C−H function-
alization through homolysis of a Ni−halide bond. This
represents a new approach to C(sp3)−H functionalization by
utilizing visible light to access a mechanistically distinct reaction
pathway. Further studies focused on mechanistic elucidation are
currently underway.
́
(6) (a) Corce, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.;
Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.
(b) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016,
138, 475. (c) Patel, N. R.; Kelly, C. B.; Jouffroy, M. Org. Lett. 2016, 18,
764.
(7) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.;
Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
(8) (a) Walling, C.; Gibian, M. J. J. Am. Chem. Soc. 1965, 87, 3361.
(b) Leight, W. J.; Lathioor, E. C.; St. Pierre, M. J. J. Am. Chem. Soc. 1996,
118, 12339. (c) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135,
17494. (d) Kamijo, S.; Hoshikawa, T.; Inoue, M. Org. Lett. 2011, 13,
5928. (e) Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.
(9) Hallen, R. T.; Gleicher, G. J.; Mahiou, B.; Clapp, G. E. J. Phys. Org.
Chem. 1989, 2, 367.
(10) (a) Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev.
́
2014, 114, 2587. (b) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int.
Ed. 2012, 51, 3066.
(11) Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt,
R. G.; Nocera, D. G. Organometallics 2015, 34, 4766.
(12) Ohkubo, K.; Mizushime, K.; Iwata, R.; Souma, K.; Suzuki, S.;
Fukuzumi, S. Chem. Commun. 2010, 46, 601.
(13) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329−10332.
(14) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Org. Lett. 2015, 17,
3640.
(15) Klein, A.; Kaiser, A.; Wielandt, W.; Belaj, F.; Wendel, E.;
́
Bertagnolli, H.; Zalis, S. Inorg. Chem. 2008, 47, 11324.
(16) Joe, C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040.
(17) During the preparation of this manuscript, MacMillan et al.
reported a C−H functionalization method for the arylation of similar
substrates: Shaw, M. H.; Shurtledd, V. W.; Terrett, J. A.; Cuthbertson, J.
D.; MacMillan, D. W. C. Science 2016, 352, 1304.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details and data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was generously supported by the NIGMS (R01-
GM-113878) and the NSF (CHE-1362841). J.C.T. was
supported by a Bristol-Myers Squibb Graduate Fellowship. We
thank Professors Joseph Subotnik and Jessica Anna (University
of Pennsylvania) for enlightening discussions. We thank Aldrich
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX