31.60(31.59); H, 3.05(3.04); S, 20.8 (21.8)%. Yield 49% (recrystallised
from hexane).
[Fe2(CO)5{PhCH2SCH2C(Me)(CH2S)2]: 1H NMR (400 MHz, CD2Cl2):
2
d 0.90 (3H, s, CH3), 1.70 [2H, d, J 14 Hz, (HHCCCHH)], 1.82 (2H, s,
CH2SCH2Ph), 2.28 [2H, d, 2J 14 Hz, (HHCCCHH)], 4.12 (2H, s, SCH2Ph),
7.40 (5H, m, SCH2C6H5). FTIR (in CH3CN): n(CO) 1925w, 1981s, br,
2046s and 2073vw cm21. EIMS: m/z 508 {M}+, 480{M 2 CO}+, 452{M 2
2CO}+, 424{M
267{Fe2SSCH2Ph}+,
2
3CO}+, 396{M
2
4CO}+, 368{M
2
5CO}+,
231{Fe2SCH2C(Me)CH2S}+,
176{Fe2S2}+,
91{CH2Ph}+. Microanal.: C19H16O5S3Fe2, found(calc.): C, 40.26(40.16);
H, 3.57(3.15); S, 15.9(18.9)%. Yield 73% (recrystallised from MeCN).
‡ Crystal structure analyses. [Fe2(CO)5{MeSCH2C(Me)(CH2S)2}]: crystal
data: C11H12Fe2O5S3, M = 432.1, monoclinic, space group P21/n (equiv. to
no. 14), a
= 18.467(2), b = 10.9622(12), c = 16.906(2) Å, b =
105.267(8)°, V = 3301.6(6) Å3, Z = 8, Dc = 1.739 g cm23, F(000) =
1744, T = 293 K, m(Mo-Ka) = 21.5 cm21, l(Mo-Ka) = 0.71069 Å.
Deep red, irregular fragment of a diamond-shaped plate crystal, sealed in
a capillary. Preliminary photographic examination, then Nonius CAD4
diffractometer. 3528 Unique reflections to qmax
= 21°, the limit of
measurable intensities; 2614 ‘observed’ with I > 2sI. Corrections for slight
deterioration, absorption (semi-empirical y-scan methods) and elimination
of negative net intensities (Bayesian statistical methods). Structure
determination by direct methods in SHELXS8 (A), refinement by full-
matrix least-squares methods, on F2, in SHELXL9 (B). Final wR2 = 0.061,
R1 = 0.046 (B) for all 3528 reflections weighted w = s22(Fo2); for the
Scheme 2 Solution IR time course for reaction of D with cyanide in MeCN
and proposed pathway to the species F and G.
‘observed’ data, R1 = 0.028. Highest difference peaks (ca. 0.24 e Å23
)
close to a carbonyl ligand.
[Fe2(CO)5{PhCH2SCH2C(Me)(CH2S)2}]: crystal data: C17H16Fe2O5S3,
M = 508.2, triclinic, space group P1 (no. 2), a = 9.8755(11), b =
(SCH2CH2S)]22 5 showing a single n(CN) at 2075 cm21
, ,
¯
11.3853(13), c = 10.3912(13) Å, a = 110.555(10), b = 92.983(9), g =
104.374(9)°, V = 1047.2(2) Å3, Z = 2, Dc = 1.612 g cm23, F(000) = 516,
T = 293(1) K, m(Mo-Ka) = 17.1 cm21, l(Mo-Ka) = 0.71069 Å.
Very thin, red-brown plate mounted on a glass fibre. Similar dif-
fractometer procedure and processing, giving 3686 unique reflections to
qmax = 25° (2715 ‘observed’ with I > 2sI). No deterioration correction
necessary. Final wR2 = 0.105 and R1 = 0.053 (B) for all 3686 reflections
Scheme 2. FAB-MS of G shows a strong parent ion at 759 for
{(K+18-crown-6)[Fe2(CO)4(CN)2{MeSCH2C(Me)(CH2S)2}]}.
These preliminary results are consistent with the initial
formation of a CO bridged di-cyanide species F which slowly
isomerises to the metal–metal bonded terminal carbonyl species
G with dissociation of the methyl thioether group, Scheme 2.
This provides the first tentative evidence for the genesis of a
model complex with all the principal structural features of the
CO inhibited form of the natural sub-site: two cyanide groups,
terminal and bridging CO ligands, and a {2Fe3S} core.§
Finally, we see in the preparation of E that a thiolate-
protected rather than -blocked group can been introduced at one
of the iron atoms: this or other S-protection/deprotection
approaches should open up further chemistry of the synthetic
sub-site.
2
weighted w = [s2(Fo2) + (0.0579P)2]21, with P = (Fo2 + 2Fc )/3; for the
‘observed’ data only, R1 = 0.037. Highest difference peaks (to ca. 0.4
e Å23) all in the cluster core region.
b102244j/ for crystallographic data in .cif or other electronic format.
§ Well-resolved IR data for the oxidised CO inhibited H-centre have been
reported recently by De Lacey et al.10 giving: n(CN) at 2096 and 2089
cm21; n(COterminal) at 2016, 1972 and 1963 cm21; and n(CObridging) at 1811
cm21. In this paramagnetic state the di-iron sub-site is magnetically
described as a localised mixed-valence state, though critically whether FeII–
FeIII or FeI–FeII was undecided.11 The data we have at hand for the FeI–FeI
species F show+n(CN) at 2083 and 2077 cm21; n(COterminal) at 1957, 1919
We thank the BBSRC and the John Innes Foundation for
supporting this work. Drs D. J. Evans and J. R. Sanders are
thanked for helpful discussion.
and 1878 cm21; and n(CObridging) at 1780 cm21. Thus Dn(COterminal
)
corresponds to 59, 53 and 85 cm21 respectively with Dn(CObridge) = 31
cm21. These magnitudes are consistent with the oxidised CO-form of the
sub-site having the FeI–FeII configuration (i.e. it is one-electron oxidised
with respect to F) and lends support to the deduction of De Lacey et al. that
proximal iron atom is in the Fe II state {Dn(CO) = 85 cm21} with the less
perturbed distal iron atom {Dn(CO) = 59, 53 cm21} in the FeI state.
Notes and references
1
† Spectroscopic and analytical data. MeC(CH2S)2CH2SH: H NMR (400
MHz, C6D5CD3): d 0.73 (3H, s, CH3), 0.89 (1H, t, 3J 9 Hz, SH), 2.07 (2H,
d, 3J 9 Hz, CH2SH), 2.27 [2H, d, 2J 11.2 Hz, (CHHSSCHH)], 2.48 [2H, d,
2J 11.2 Hz, (CHHSSCHH)]. FTIR (KBr): n(SH) 2551m, br cm21. EIMS:
m/z 166 {M}+, 133 {M 2 SH}+, 119 {M 2 CH2SH}+. Microanal.: C5H10S3,
found(calc.): C, 36.48(36.12); H, 6.14(6.06); S, 57.6(57.9)%. Yield 91%.
1 Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-
Camps, Structure, 1999, 7, 13.
2 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, Science,
1998, 282, 1853.
3 A. J. Pierik, M. Hulstein, W. R. Hagen, S. P. J. Albracht and K. A.
Bagley, Eur. J. Biochem., 1998, 258, 572.
4 Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps and J. W. Peters, TIBS,
138, 25, 2000.
5 A. Le Cloirec, S. P. Best, S. Borg, S. C. Davies, D. J. Evans, D. L.
Hughes and C. J. Pickett, Chem. Commun., 1999, 22, 2285; M. Schmidt,
S. M. Contakes and T. B. Rauchfuss, J. Am. Chem. Soc., 1999, 121,
9736; E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies and M. Y.
Darensbourg, Angew. Chem., Int. Ed., 1999, 38, 3178.
6 B. J. Lemon and J. W. Peters, Biochemistry, 1999, 38, 12969.
7 C. Kolomyjec, J. Whelan and B. Bosnich, Inorg. Chem., 1983, 22,
2343.
1
MeC(CH2SH)2CH2SMe: H NMR (400 MHz, CD2Cl2): d 1.03 (3H, s,
CH3), 1.32 (2H, t, 3J 9 Hz, SH), 2.13 (3H, s, SCH3), 2.63 (2H, s, CH2SCH3),
2.63 [4H, d, 3J 9 Hz, (HSCH2CCH2SH)]. EIMS: m/z 182 {M}+, 101
{CH3C(CH2)2CH2S}+, 87 {CH3C(CH2)CH2S}+, 69 {CH3C(CH2)3}+, 61
{CH3CCH2}+, 47 {CH2SH}+. Microanal.: C6H14S3, found(calc.): C,
39.26(39.56); H, 7.70(7.59); S, 53.0(52.8)%. Yield 55%.
MeC(CH2SH)2CH2SCH2Ph: 1H NMR (400 MHz, CD2Cl2): d 0.90 (3H,
s, CH3), 1.11 (1H, t, 3J 9 Hz, SH), 2.46 (2H, s, CH2SCH2Ph), 2.47 [4H, d,
2J 9 Hz, (HSCH2CCH2SH)], 3.63 (2H, s, SCH2Ph), 7.24 (5H, m,
SCH2C6H5). EIMS: m/z 258 {M}+, 166{CH3C(CH2S)2CH2SH}+,
133{CH3C(CH2S)2CH2}+, 101{CH3C(CH2)2CH2S}+,
69{CH3C(CH2)3}+. Yield 31%.
91{CH2Ph}+,
[Fe2(CO)5{MeSCH2C(Me)(CH2S)2]: 1H NMR (400 MHz, CD2Cl2): d
0.90 (3H, s, CH3), 1.65 [2H, d, 2J 14 Hz, (HHCCCHH)], 2.05 (2H, br,
CH2SCH3), 2.23 [2H, d, 2J 14 Hz, (HHCCCHH)], 2.64 (3H, s, SCH3). FTIR
(in CH3CN): n(CO) 1925w, 1979s, br and 2046s cm21. EIMS: m/z 432
{M}+, 404{M 2 CO}+, 376{M 2 2CO}+, 348{M 2 3CO}+, 320{M 2
4CO}+, 292{M 2 5CO}+, 180{MeC(CH2S)2CH2SMe}+, 176{Fe2S2}+, 61
{CH3CCH2}+. Microanal.: C13H12O5S3Fe2·(0.1C6H14) found(calc.): C,
8 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
9 G. M. Sheldrick, SHELXL - Program for crystal structure refinement,
University of Göttingen, Germany, 1993.
10 A. L. De Lacey, C. Stadler, C. Cavazza, E. C. Hatchikian and V. M.
Fernandez, J. Am. Chem. Soc., 2000, 122, 11232.
11 C. V. Popescu and E. Munck, J. Am. Chem. Soc., 1999, 121, 7877.
848
Chem. Commun., 2001, 847–848