Reactions of Mn with H2O and MnO with H2
J. Phys. Chem. A, Vol. 105, No. 24, 2001 5807
(11) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999,
SCHEME 1
121, 8549.
(12) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 2000,
122, 114.
(13) Rosi, M.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1989, 90, 7264.
(14) Rosi, M.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1990, 92, 1876.
(15) For example, see: Barber, J.; Andersson, B. Nature 1994, 370,
31.
(16) See for example: Blomberg, M. R. A.; Siegbahn, P. E. M.; Styring,
S.; Babcock, G. T.; Akermark, B.; Korall, P. J. Am. Chem. Soc. 1997, 119,
8285. Aromi, G.; Wemple, M. W.; Aubin, S. J.; Folting, K.; Hendrickson,
D. N.; Christou, G. J. Am. Chem. Soc. 1998, 120, 5850. Yachandra, V. K.;
Sauer, K.; Klein, M. P. Chem. ReV. 1996, 96, 2927.
(17) Schro¨der, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1995, 34,
1973.
The formation of H2MnO requires spin crossing and is energeti-
cally unfavored due to the stability of the half-filled Mn 3d5
configuration.
(18) Schro¨der, D.; Schwarz, H. Andew. Chem., Int. Ed. Engl. 1991, 29,
1433.
(19) Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 2037.
Georgiadis, R.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes
1989, 82, 123.
(20) Tonkyn, R.; Weisshaar, J. C. J. Phys. Chem. 1986, 90, 2305.
(21) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101,
6449.
(22) Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. J. Am. Chem.
Soc. 1995, 117, 2033.
(23) Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. J. Am. Chem.
Soc. 1994, 116, 7815.
(24) Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. Organometallics
1994, 13, 4072.
(25) Zhang, L. N.; Dong, J.; Zhou, M. F. J. Phys. Chem. A 2000, 104,
8882.
(26) Zhou, M. F.; Zhang, L. N., Dong, J.; Qin, Q. Z. J. Am. Chem. Soc.
2000, 122, 10680.
Conclusions
The reactions of Mn atoms with water and MnO with H2
have been studied using matrix-isolation FTIR and DFT
theoretical calculations. The MnOH2, HMnOH and (H2)MnO
intermediates in the Mn + H2O S MnO + H2 reaction path
have been observed and identified, and the potential energy
surface was given. In addition, HMnOMnH, Mn(OH)2,
HMnOMnOH, and posssibly HMnOMnOMnH molecules were
also produced on photolysis in the Mn + H2O reaction. The
aforementioned species were identified via isotopic substitutions
as well as density functional theoretical frequency calculations.
Scheme 1 summarizes the observed chemistry:
The spectroscopic studies of these molecules in conjunction
with DFT calculations underscore the palpable differences
between the Mn chemistry and the analogous chemistry with
early transition metals. This work also provides a good example
in demonstrating the significance of the combination of experi-
mental and theoretical approaches in interpreting the reaction
intermediates of one, two, or three metal atoms with one or
two water molecules.
(27) Zhou, M. F.; Dong, J.; Zhang, L. N.; Qin, Q. Z. J. Am. Chem. Soc.
2001, 123, 135.
(28) Chen, M. H.; Wang, X. F.; Zhang, L. N.; Yu, M.; Qin, Q. Z. Chem.
Phys. 1999, 242, 81.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;
Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(30) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(31) Lee, C.; Yang, E.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(32) Bauschlicher, C. W. Jr.; Ricca, A.; Partridge, H.; Langhoff, S. R.
In Recent AdVances in Density Functional Theory; Chong, D. P., Ed.; World
Scientific Publishing: Singapore, 1997, Part II.
Acknowledgment. We acknowledge support for this re-
search from NSFC (Grant 20003003) and the Chinese NKBRSF,
and Mr. J. Dong and H.Lu for assistance with experiments.
Supporting Information Available: Detailed structural
parameters, absolute energies, vibrational frequencies for dif-
ferent spin state molecules, and atomic spin density on Mn
centers for the ground-state molecules. This material is available
(33) Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1998, 282, 219.
(34) Siegbahn, P. E. M. AdV. Chem. Phys. 1996, 93.
(35) Bauschlicher, C. W., Jr.; Maitre, P. J. Chem. Phys. 1995, 99, 3444.
(36) Hartmann, M.; Clark, T.; Van Eldik, R. J. Am. Chem. Soc. 1997,
119, 7843.
(37) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980,
72, 650.
(38) Wachter, J. H. J. Chem. Phys. 1970, 52, 1033. Hay, P. J. J. Chem.
Phys. 1977, 66, 4377.
(39) Head-Gordon, M.; Pople, J. A.; Frisch, M. Chem. Phys. Lett. 1988,
153, 503.
(40) Chertihin, G. V.; Andrews, L. J. Phys. Chem. A 1997, 01, 8547
and references therein.
(41) Ferrante, R. F.; Wilkerson, J. L.; Graham, W. R. M.; Weltner, W.,
Jr. J. Chem. Phys. 1977, 67, 5904. Bauschlicher, C. W., Jr.; Maitre, P. Theor.
Chim. Acta 1995, 90, 189.
References and Notes
(1) Liu, K.; Parson, J. M. J. Chem. Phys. 1978, 68, 1794.
(2) Kauffman, J. W.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem.
1985, 89, 3541.
(3) Kauffman, J. W.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem.
1985, 89, 3547.
(4) Tilson, J. L.; Harrison, J. F. J. Phys. Chem. 1991, 95, 5097.
(5) Guo, B. C.; Kerns, K. P.; Castleman, A. W. J. Phys. Chem. 1992,
96, 4879.
(6) Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem.
1994, 98, 6522.
(7) Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem.
1994, 98, 11490.
(8) Ye, S. Theochem. 1997, 417, 157.
(9) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Phys. Chem. A 1998,
102, 293.
(10) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999,
121, 574.
(42) Moore, C. E. Atomic Energy LeVels; National Bureau of Stan-
dards: Washington, DC, 1959. ]