5076
H.-C. Lin et al. / Tetrahedron Letters 46 (2005) 5071–5076
2. (a) Ferrier, R. J. J. Chem. Soc. 1964, 5443; (b) Ciment, D.
M.; Ferrier, R. J. J. Chem. Soc. C 1966, 441.
selectivity was greatly enhanced here in comparison with
the glycosylation of O-nucleophiles, including the a-
stereoselectivity and selective product formation from
a preferential pathway. Nevertheless, the parallel reac-
tions using other Lewis acids often afforded undesired
product(s). For example, a diene product 49 was
obtained owing to the direct substitution of exo-glycal
1 with allyl trimethylsilane in the presence of BF3ÆOEt2.
The same condition with TMSN3 gave azide adduct 50
as the major product (75%).
3. (a) Takhi, M.; Abdel-Rahman, A. A.-H.; Schmidt, R. R.
Synlett 2001, 427; (b) Yadav, J. S.; Reddy, B. V. S.;
Murphy, C. V. S. R.; Kumar, G. M. Synlett 2000, 1451.
4. (a) Das, S. K.; Reddy, K. A.; Roy, J. Synlett 2003, 1607–
1610; (b) Swamy, N. R.; Venkateswarlu, Y. Synthesis
2002, 598.
5. (a) Seeberger, P. H.; Danishefsky, S. J. Acc. Chem. Res.
1998, 31, 685; (b) Seeberger, P. H.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 1997, 36, 491; (c) Danishefsky, S.
J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35, 1318.
6. (a) Zheng, C.; Seeberger, P. H.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 1998, 37, 786; (b) Goering, B. K. Ph.D.
Dissertation, Cornell University, 1995.
7. Zheng, C.; Seeberger, P. H.; Danishefsky, S. J. J. Org.
Chem. 1998, 63, 1126.
8. (a) Seeberger, P. H.; Eckhardt, M.; Gutteridge, C. E.;
Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10064; (b)
Danishefsky, S.; Kato, N.; Askin, D.; Kerwin, J. F., Jr.
J. Am. Chem. Soc. 1982, 104, 360.
9. Roberge, J. Y.; Beebe, X.; Danishefsky, S. J. Science 1995,
269, 202.
10. Tatsuta, K.; Fujimoto, K.; Kinoshita, M.; Umezawa, S.
Carbohydr. Res. 1977, 54, 85.
11. Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696.
12. Bolitt, V.; Mioskowski, C.; Lee, S.-G.; Falck, J. R. J. Org.
Chem. 1990, 55, 5812.
13. Sabesan, S.; Neira, S. J. Org. Chem. 1991, 56, 5468.
14. (a) Kolar, C.; Kneissl, G. Angew. Chem. Int. Ed. Engl.
1990, 29, 809; (b) Kaila, N.; Blumenstein, M.; Bielawska,
H.; Franck, R. W. J. Org. Chem. 1992, 57, 4576.
15. (a) Lin, H.-C.; Yang, W.-B.; Gu, Y.-F.; Chen, C.-Y.; Wu,
C.-Y.; Lin, C.-H. Org. Lett. 2003, 5, 1087–1089; (b) Lin,
H.-C.; Chang, C.-C.; Chen, J.-Y.; Lin, C.-H. Tetrahedron:
Asymmetry 2005, 16, 297; (c) Chang, C.-F.; Yang, W.-B.;
Chang, C.-C.; Lin, C.-H. Tetrahedron Lett. 2002, 43, 6515.
16. For example, the 1H NMR spectra of the glycosylation
product 10 indicated the H-100 resonance appeared at d
2.08 (t, J = 7.3Hz, 2H), H-2 00 at d 3.90 (m, 1H) and 4.12
(m, 1H), and CH3CO– at d 1.90 (s, 3H). The signals at d
20.89 and 170.8 corresponding to the CH3CO– and
CH3CO– resonances, respectively, were found in the 13C
NMR spectra of the same molecule. Please see the
numbering structure in Scheme 3.
In conclusion, we have conducted in detail the investiga-
tion of acid-catalyzed glycosylation of endo- and exo-
glycals that are simple and can be finished efficiently in
good to excellent yields. The reactions can be applied
for the glycosyl additions of O-, C-, and N-nucleophiles.
The carbonate or hydroxyl group at C3position exclu-
sively adopted the Ferrier reaction pathway in the reac-
tions of endo-glycals, while the acetate and benzyl ether
substituents predominantly gave a protonation product
in those of exo-glycals. Particularly the former reactions
are useful for the synthesis of 2,3-unsaturated-a-glyco-
sides. In addition to providing an expeditious glycosyl-
ation procedure, our work represents the first report to
clearly display the different reactivity between endo-
and exo-glycals, and demonstrate both reaction path-
ways to be in the control of the allyl substituent and
protecting group. Current efforts are in progress to
study if other factors play a role in the competition
and will be published in due course.
Acknowledgements
The authors thank the financial support from the
National Science Council of Taiwan (NSC93-2113-
M-001-003 and NSC93-2113-M-001-034) and Academia
Sinica, Taiwan.
Supplementary data
17. The NOESY spectra of 10, for instance, exhibited the
cross-peaks between H2 (d 3.97) and H100 (d 2.08), as well
as H5 (d 3.80) and H10 (d 3.43).
18. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.;
Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121,
734.
1H and 13C NMR spectra of 45 compounds are available
(75 pages). Supplementary data associated with this arti-
19. Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004,
69, 6137.
References and notes
20. The effect has been long recognized. Please see (a) Paulson,
H.; Richter, A.; Sinnwell, H.; Stenzel, W. Carbohydr. Res.
1974, 38, 312; (b) Fraser-Raid, B.; Bocter, B. Can. J.
Chem. 1969, 47, 393; (c) Feather, M. S.; Harris, J. F. J.
Org. Chem. 1965, 30, 153.
1. Williams, L. J.; Garbaccio, R. M.; Danishefsky, S. J. In
Carbohydrates in Chemistry and Biology; Ernst, B., Hart,
G. W., Sinay, P., Eds.; Wiley-VCH Verlag GmbH:
Weinheim, Germany, 2000; Vol. 1, pp 61–92.