M. Guerrero et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3632–3636
3635
Scheme 3. Synthesis of molecules 15, 16. Reagents and conditions: (i) 10 (1 equiv), 11 (1.5 equiv), Pd(PPh3)4 (0.1 equiv), 2 M aq Na2CO3 (2 equiv), 1,4-dioxane, 80 °C,
overnight; (ii) LiOH (1.6 equiv), THF/MeOH/H2O (2:2:1), rt, 3 h, 65% (over two steps); (iii) 12 (1 equiv), 13 or 14 (1.5 equiv), EDCl (1.5 equiv), HOBt (1.5 equiv), DMF, overnight,
60–70%.
(9e, 9f, 9g, 9h), suggesting that region A binds to a lipophilic pock-
et. Successively, a new set of analogs was prepared by replacing the
phenyl ring. Interestingly, thiophene and furan rings were found to
be good bioisosteres. The 3-thienyl 9k and 2-thienyl 9m analogs
were slightly more potent than the phenyl derivative 9d. As the
presence of either chlorine or methyl groups in positions 2 and 5
of the phenyl ring were found to be essential for the activity, meth-
ylated and chlorinated thienyl derivatives (9l, 9n and 9o) were
synthesized. Interestingly, 4-methyl-3-thienyl 9l was 1.5-fold
more potent than 9k (similar trend was observed in the phenyl ser-
ies, 9c vs 9d) whereas 3-methyl-2-thienyl 9o was equipotent to
9m. Moreover, equipotency was found for 3-chlorophenyl 9b and
2-furanyl 9p compared to 5-chloro-2-thienyl 9n and thienyl 9m,
respectively. Interestingly, thienyl and furanyl derivatives showed
more suitable physicochemical properties (3.3 6 c Log P 6 4.3)
within the hit class.
To merge SAR studies of region A and B, hybrid molecules 15
and 16 (CYM50374) were synthesized (Scheme 3). 5-Bromofuran
10 underwent Suzuki cross coupling with thiophene boronic acid
11 followed by ester hydrolysis to afford carboxylic acid 12 in good
yields. Amide coupling of 12 with the opportune anilines 13 and 14
yielded the final compounds in moderate yields.
Indeed, 15 (c Log P = 3.0, tPSA = 58.6) and 16 (c Log P = 2.7,
tPSA = 58.6) were potent S1P4 antagonists (IC50 = 46 and 34 nM,
respectively), with lower lipophilicity compared to the hit
compound.
erties were selected as lead compounds to initiate a lead-optimiza-
tion program.
In summary, we conducted a systematic SAR analysis of novel
selective S1P4 antagonists based on 5-aryl furan-2-arylcarboxa-
mide 1 scaffold, identified by our HTS efforts. Physicochemical
properties (c Log P and tPSA) were calculated for a preliminary
evaluation of drug-like properties. Notably, introduction of differ-
ent ionizable and polar groups at position 4 of region B led to the
identification of molecules of particular interest (4v and 16) with
attractive in vitro biological profile and adequate physicochemical
properties. As the first disclosure of S1P4 antagonists with low
nanomolar potency and high selectivity against S1P1–3,5 receptor
subtypes, the class of molecules herein reported represents a sig-
nificant milestone that may allow experiments aimed to gain more
insights into the biological functions of S1P4 in fundamental
immunological processes. Details of more in-depth ongoing SAR
for lead-optimization of the identified lead molecules will be com-
municated in due course.
Acknowledgments
This work was supported by the National Institute of Health
Molecular Library Screen Center Network grant U54 MH084512A.
We thank Mark Southern for data management with Pub Chem.
References and notes
A set of the most active compounds was selected for functional
assays at S1P1–3,5 subtypes (Table 3). Notably, all the selected com-
pounds displayed an exquisite selectivity for the S1P4 receptor ver-
sus the other receptor subtypes; among them 4v (CYM50358) and
16 (CYM50374) showing the most suitable physicochemical prop-
1. Marsolais, D.; Hahm, B.; Walsh, K. B.; Edelmann, K. H.; McGavern, D.; Hatta, Y.;
Kawaoka, Y.; Rosen, H.; Oldstone, M. B. A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
1560.
2. Marsolais, D.; Rosen, H. Nat. Rev. Drug Discov. 2009, 8, 297–307.
3. Alfonso, C.; McHeyzer-Williams, M. G.; Rosen, H. Eur. J. Immunol. 2006, 36, 149.
4. Jo, E.; Sanna, M. G.; Gonzalez-Cabrera, P. J.; Thangada, S.; Tigyi, G.; Osborne, D.
A.; Hla, T.; Parrill, A. L.; Rosen, H. Chem. Biol. 2005, 12, 703.
5. Sanna, G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.; Peterson, M. S.; Webb, B.;
Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. J. Biol. Chem. 2004, 279, 13839.
6. Wei, S. H.; Rosen, H.; Matheu, M. P.; Sanna, M. G.; Wang, S.; Jo, E.; Wong, C.;
Parker, I.; Cahalan, M. Nat. Immunol. 2005, 6, 1228.
Table 3
S1P selectivity counter screen (IC50, nM, percentage of inhibition)a,b,c
Compd
S1P4 IC50
S1P1 IC50
S1P2 IC50
S1P3 IC50
S1P5 IC50
7. Rosen, H.; Goetzl, E. J. Nat. Rev. Immunol. 2005, 5, 560.
4b
4c
4o
4p
4t
4v
4z
9o
15
16
41
89
58
80
36
25
44
93
46
34
NA
NA
50%c
NA
55%c
NA
50%c
NA
3000
40%c
40%
8. Gräler, M. H.; Bernhardt, G.; Lipp, M. Genomics 1998, 53, 164; (b) Van Brocklyn,
J. R.; Gräler, M. H.; Bernhardt, G.; Hobson, J. P.; Lipp, M.; Spiegel, S. Blood 2000,
53, 164; (c) Im, D. S.; Heise, C. E.; Ancellin, N.; O’Dowd, B. F.; Shei, G. J.; Heavens,
R. P.; Rigby, M. R.; Hla, T.; Mandala, S.; McAllister, G.; George, S. R.; Lynch, K. R.
J. Biol. Chem. 2000, 275, 14281.
5300
20%c
45%c
6400
35%c
95%c
75%c
80%c
2800 (90%)b
2800 (70%)b
3000 (85%)b
3900 (90%)b
2400 (90%)b
2600
5400
30%c
60%
95%
70%c
20%c
10%c
NA
9. Toman, R. E.; Spiegel, S. Neurochem. Res. 2002, 27, 619.
5500 (90%)b
60%c
40%c
NA
10. Marsolais, D.; Hahm, B.; Edelmann, K. H.; Walsh, K. B.; Guerrero, M.; Hatta, Y.;
Kawaoka, Y.; Roberts, E.; Oldstone, M. B.; Rosen, H. Mol. Pharmacol. 2008, 74,
896.
11. Maeda, Y.; Matsuyuki, H.; Shimano, K.; Kataoka, H.; Sugahara, K.; Kenji Chiba,
K. J. Immunol. 2007, 178, 3437.
80%c
90%c
NA
12. Golfier, S.; Kondo, S.; Schulze, T.; Takeuchi, T.; Vassileva, G.; Achtman, A. H.;
Gräler, M. H.; Abbondanzo, S. J.; Wiekowski, M.; Kremmer, E.; Endo, Y.; Lira, S.
A.; Bacon, K. B.; Lipp, M. FASEB J. 2010, 24, 4701.
13. (a) Hughes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.; DeCrescenzo, G. A.; Devraj, R.
V.; Ellsworth, E.; Fobian, Y. M.; Gibbs, M. E.; Gilles, R. W.; Greene, N.; Huang, E.;
a
b
c
Data are reported as mean for n = 3 determinations.
Percentage of inhibition.
Percentage of inhibition at 25
lM.
lM. NA = no active at concentrations up to
25