J. Am. Chem. Soc. 2001, 123, 6423-6424
6423
The five-coordinate Pt(IV) complex, (L)PtMe3 (1), where L-
is the anionic â-diimine ligand [{(o-iPr2C6H3)NC(CH3)}2CH]- has
been synthesized and fully characterized.9,10 Compound 1 was
prepared in good yield (75%) from the potassium salt of the
ligand11 and tetrameric trimethyl platinum(IV) triflate12 in dry
pentane solution. X-ray quality crystals of (L)PtMe3 were obtained
by reducing the volume of the pentane solution in vacuo. An
ORTEP diagram of 1 is shown in Figure 1, with selected structural
parameters contained in the figure legend.
A Stable Five-Coordinate Platinum(IV) Alkyl
Complex
Ulrich Fekl, Werner Kaminsky,† and Karen I. Goldberg*
Department of Chemistry, Box 351700
UniVersity of Washington
Seattle, Washington 98195-1700
ReceiVed February 13, 2001
ReVised Manuscript ReceiVed April 30, 2001
While coordination geometries ranging from square pyramidal
to trigonal bipyramidal are available for a five-coordinate
complex, the geometry about the platinum in 1 is clearly a square
pyramid. The Pt atom deviates only 0.099(3) Å toward C2 from
the perfect N1-N1′-C1-C1′ plane. Nothing is coordinating to
the open site on the Pt atom. No solvent molecules are found in
the crystal structure. The platinum center of the next molecule in
the crystal lattice is 7.1 Å away. The closest approach of
nonbonded groups to the open site are the isopropyl methine
hydrogens at 3.0 Å. This is the same distance observed in the
related Pt(II) complex 2 discussed below. In solution, no 195Pt
satellites are seen for the 1H NMR signals of the isopropyl
hydrogens. Thus, there is no indication of agostic interactions
between the isopropyl moieties on the ligand and the metal. It is
interesting that the methyl group trans to the open site shows
only a slightly shorter Pt-C distance compared to methyl trans
to nitrogen (2.038(7) versus 2.056(4) Å). A larger difference might
have been expected based on trans influence arguments.13,14
The NMR spectral data9 impressively demonstrate the high
solution-phase fluxionality of this five-coordinate complex. The
apparent symmetry of the molecule is greater in solution than in
the solid-state structure. The isopropyl groups above and below
the NCCCNPt plane are equivalent by NMR. The same is
observed for the aromatic hydrogens, and this pseudo-C2ν sym-
Coordinatively and electronically unsaturated species are short-
lived intermediates in a large number of reactions involving late
transition metal complexes.1 These species containing an “open-
site” in the metal coordination sphere are notoriously difficult to
characterize, owing to their inherent reactivity.2 In particular, five-
coordinate Pt(IV) alkyl species have been consistently proposed
as key intermediates in reductive elimination/oxidative addition
reactions to form or break C-C, C-H, C-O, and C-I bonds at
Pt(IV)/Pt(II), but such species have never been isolated or
unambiguously characterized.3,4 The intermediacy of these five-
coordinate complexes in bondbreaking and -making reactions of
model Pt complexes has significant implications for their involve-
ment in platinum-catalyzed selective alkane functionalization
reactions.5 While it has been possible to calculate the geometry
of five-coordinate Pt(IV) alkyl intermediates using quantum
chemical methods,6 attempts to generate such species experimen-
tally have invariably led to the observation that weakly coordinat-
ing anions or solvent molecules bind to the metal such that the
examination of the truly coordinatively unsaturated species was
not possible.7,8b No experimental evidence to establish the
geometry of the five-coordinate Pt(IV) alkyl complexes has been
reported.8 We report herein the first example of an isolable and
crystallographically characterized five-coordinate Pt(IV) alkyl
complex.
(7) (a) Crespo, M.; Puddephatt, R. J. Organometallics 1987, 6, 2548. (b)
Levy, C. J.; Puddephatt, R. J. J. Am. Chem. Soc. 1997, 119, 10127. (c) Rendina,
L. M.; Puddephatt, R. J. Chem. ReV. 1997, 97, 1735. (d) Hill, G. S.; Yap, G.
P. A.; Puddephatt, R. J. Organometallics 1999, 18, 1408.
† UW Chemistry X-ray Facility.
(1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA 1987.
(8) (a) Structurally characterized bimetallic or multimetallic complexes that
are models for five-coordinate alkylplatinum(IV) have been reported. These
involve metal complex fragments which are isolobal to CH3+ coordinated to
Pt(II). See for example: Arsenault, G. J.; Anderson, C. M.; Puddephatt, R. J.
Organometallics 1988, 7, 2094. (b) A potentially five-coordinate Werner-
type complex of platinum(IV), PtCl5-, has dichloromethane (which was
disordered in the crystal structure) in the sixth coordination site. Cook, P.
M.; Dahl, L. F.; Dickerhoof, D. W. J. Am. Chem. Soc. 1972, 94, 5511. (c)
Five-coordinate silyl(dihydrido) Pt(IV) complexes have only recently been
structurally characterized: Reinartz, S.; White, P.; Brookhart, M.; Templeton,
J. L. J. Am. Chem. Soc. 2001, 123, 6425-6426.
(2) Cases where suitable stabilizing ligand systems have been found involve
mainly ruthenium, iridium, and rhodium, e.g.: (a) Gottschalk-Gaudig, T.;
Folting, K.; Caulton, K. G. Inorg. Chem. 1999, 38, 5241. (b) Rybtchinski,
B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 1996, 118,
12406. (c) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics
1998, 17, 4121.
(3) Examples for C-C (a-h), C-I (d), and C-O (e, f): (a) Brown, M.
P.; Puddephatt, R. J.; Upton, C. E. E. J. Chem. Soc., Dalton Trans. 1974,
2457. (b) Roy, S.; Puddephatt, R. J.; Scott, J. D. J. Chem. Soc., Dalton Trans.
1989, 2121. (c) Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000,
122, 962. (d) Goldberg, K. I.; Yan, J.; Breitung, E. M. J. Am. Chem. Soc.
1995, 117, 6889. (e) Williams, B. S.; Holland, A. W.; Goldberg, K. I. J. Am.
Chem. Soc. 1999, 121, 252. (f) Williams, B. S.; Goldberg, K. I. J. Am. Chem.
Soc. 2001, 123, 2576. (g) Albrecht, M.; Gossage, R. A.; Spek, A. L.; van
Koten, G. J. Am. Chem. Soc. 1999, 121, 11898. (h) van der Boom, M. E.;
Kraatz, H.-B.; Hassner, L.; Ben-David, Y.; Milstein, D. Organometallics 1999,
18, 3873.
(9) (L)PtMe3 (1): 1H NMR (750.1 MHz, pentane-d12, 223 K) δ 7.12 (4 H,
3
3
d, JH-H ) 7.5 Hz, Hm), 7.04 (2 H, t, JH-H ) 7.5 Hz, Hp), 4.99 (1 H, s,
â-CH), 2.89 (4 H, septet, 3JH-H ) 6.8 Hz, CHMe2), 1.72 (6 H, s, R-Me), 1.16
(24 H, d, JH-H ) 7 Hz, CHMeMe′, CHMeMe′, coincidently degenerate) 0.85
2
(9 H, s, JPt-H ) 74 Hz, Pt-Me). At 200 MHz (298 K, cyclohexane-d12), the
Pt-coupling to ligand hydrogens can be resolved: δ 4.98 (1 H, s, JPt-H ) 4.4
Hz, â-CH), 1.71 (6 H, s, JPt-H ) 3.2 Hz, R-Me). 13C{1H} NMR (188.6 MHz,
pentane-d12, 272 K) δ 159.1 (JPt-C ) 12 Hz, CR), 148.2 (Co), 142.3 (JPt-C
)
(4) Examples for C-H: (a) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J.
Organometallics 1995, 14, 4966. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J.
E. J. Am. Chem. Soc. 1996, 118, 5961. (c) Jenkins, H. A.; Yap, G. P. A.;
Puddephatt, R. J. Organometallics 1997, 16, 1946. (d) Fekl, U.; Zahl, A.;
van Eldik, R. Organometallics 1999, 18, 4156. (e) O’Reilly, S.; White, P. S.;
Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 5684. (f) Hill, G. S.; Vittal, J.
J.; Puddephatt, R. J. Organometallics 1997, 16, 1209. (g) Prokopchuk, E. M.;
Jenkins, H. A.; Puddephatt, R. J. Organometallics 1999, 18, 2861. (h)
Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
2000, 122, 10846. (i) Johansson, L.; Tilset, M. J. Am. Chem. Soc. 2001, 123,
739.
(5) (a) Goldshleger, N. F.; Eskova, V. V.; Shilov, A. E.; Shteinman, A. A.
Zh. Fiz. Khim. 1972, 46, 1353. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E.
Angew. Chem., Int. Ed. 1998, 37, 2181. (c) Periana, R. A.; Taube, D. J.;
Gamble, S.; Taube, H.; Satoh, T.; Fuji, H. Science 1998, 280, 560.
(6) (a) Hill, G. S.; Puddephatt, R. J. Organometallics 1998, 17, 1478. (b)
Bartlett, K. L.; Goldberg, K. I.; Borden, W. T. J. Am. Chem. Soc. 2000, 122,
1456. (c) Heiberg, H.; Johansson, L.; Gropen, O.; Ryan, O. B.; Swang, O.;
Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831.
10 Hz, Cipso), 126.1 (Cp), 124.0 (Cm), 99.5 (JPt-C ) 33 Hz, CâH), 29.5 (CHMe2),
26.1 (JPt-C ) 11 Hz, R-Me), 25.15, (CHMeMe′), 25.00 (CHMeMe′), 1.66
(JPt-C ) 682 Hz, Pt-Me; 1H coupled experiment: JH-C ) 135 Hz). Anal.
Calcd for C32H50N2Pt: C, 58.43; H, 7.66; N, 4.26. Found C, 58.93; H 7.73;
N, 4.23.
(10) (L)PtMe3 (1): C32H50N2Pt, MW ) 657.83, clear orange cube;
orthorhombic, space group ) Pnam, T ) 130(2) K, a ) 14.1080(3) Å, b )
9.8470(3) Å, c ) 21.7820(4) Å, Z ) 4, R1 ) 0.0348, wR2 ) 0.0892. GOF
(F2) ) 1.065
(11) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.;
Calabrese, J. C.; Arthur, S. D. Organometallics 1997, 16, 1514.
(12) (a) Baldwin, J. C.; Kaska, W. C. Inorg. Chem. 1979, 18, 686. (b)
Schlecht, S.; Magull, J.; Fenske, D.; Dehnicke, K. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1994.
(13) For a recent discussion of the trans influence in six-coordinate
platinum(IV) trimethyl complexes, see: Fekl, U.; van Eldik, R.; Lovell, S.;
Goldberg, K. Organometalllics 2000, 19, 3535.
+
(14) In contrast, DFT calculations for (NH3)2PtMe3 indicated a slightly
longer Pt-C distance (∆ ) 0.01 Å) trans vs cis to the open site.6a
10.1021/ja0156690 CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/07/2001