Organic Letters
Letter
(d) Liang, D.; He, Y.; Liu, L.; Zhu, Q. Org. Lett. 2013, 15, 3476−
3479.
(6) Hranjec, M.; Karminski-Zamola, G. Molecules 2007, 12, 1817−
1828.
(7) (a) Cai, Q.; Li, Z.; Wei, J.; Fu, L.; Ha, C.; Pei, D.; Ding, K. Org.
Lett. 2010, 12, 1500−1503. (b) Jin, H.; Zhou, B.; Gao, J.; Jiang, D.;
Jia, J.; Yang, Z. Synthesis 2010, 2010, 2794−2798.
(8) Han, S.; Jiang, Z.; Miao, D.; Tong, Y.; Pan, Q.; Li, X.; Hu, R.
Synthesis 2015, 47, 1913−1921.
construct benzimidazo[1,2-a]quinolines in [BMIM]BF4 with-
out extra additives. This methodology is characterized by easily
obtained materials, a broad substrate scope, simple operation,
and moderate to high yield. It will be a useful strategy to
prepare benzimidazo[1,2-a]quinoline based bioactive mole-
cules. Further exploration for other studies of imidamides and
anthranils is underway in our lab.
ASSOCIATED CONTENT
* Supporting Information
(9) (a) Kato, J.; Ito, Y.; Ijuin, R.; Aoyama, H.; Yokomatsu, T. Org.
Lett. 2013, 15, 3794−3797. (b) da Silva, R. B.; Lange Coelho, F.;
Rodembusch, F. S.; Schwab, R. S.; Schneider, J. M. F. M.; da Silveira
Rampon, R.; Schneider, P. H. New J. Chem. 2019, 43, 11596−11603.
(c) Nagesh, H. N.; Suresh, A.; Reddy, M. N.; Suresh, N.;
Subbalakshmi, J. G.; Chandra Sekhar, K. V. G. RSC Adv. 2016, 6,
15884−15894.
(10) (a) Ge, Q.; Li, B.; Wang, B. Org. Biomol. Chem. 2016, 14,
1814−1821. (b) Shi, L.; Wang, B. Org. Lett. 2016, 18, 2820−2823.
(c) Villar, J. M.; Suarez, J.; Varela, J. A.; Saa, C. Org. Lett. 2017, 19,
1702−1705. (d) Cheng, J.; Yang, R.; Wu, X.; Sun, S.; Yu, J. Synthesis
2018, 50, 3487−3492. (e) Dhole, S.; Sun, C. Adv. Synth. Catal. 2019,
361, 535−541. (f) Liu, J.; Fang, H.; Cheng, R.; Wang, Z.; Yang, Y.;
You, J. Chem. Commun. 2019, 55, 7097−7100. (g) Xiao, Y.; Wu, X.;
Wang, H.; Sun, S.; Yu, J. T.; Cheng, J. Org. Lett. 2019, 21, 2565−
2568. (h) Biswas, A.; Sarkar, S.; Samanta, R. Chem. - Eur. J. 2019, 25,
3000−3004.
(11) (a) Huang, J.; Dong, L.; Han, B.; Peng, C.; Chen, Y. Chem. -
Eur. J. 2012, 18, 8896−8900. (b) Ghorai, D.; Choudhury, J. Chem.
Commun. 2014, 50, 15159−15162. (c) Ge, Q.; Li, B.; Song, H.;
Wang, B. Org. Biomol. Chem. 2015, 13, 7695−7710. (d) Wezeman, T.;
Scopelliti, R.; Tirani, F. F.; Severin, K. Adv. Synth. Catal. 2019, 361,
1383−1388.
(12) Li, X.; Chen, X.; Wang, H.; Chen, C.; Sun, P.; Mo, B.; Peng, J.
Org. Biomol. Chem. 2019, 17, 4014−4023.
(13) (a) Xu, L.; Wang, L.; Feng, Y.; Li, Y.; Yang, L.; Cui, X. Org. Lett.
2017, 19, 4343−4346. (b) Li, Y.; Jia, C.; Li, H.; Xu, L.; Wang, L.; Cui,
X. Org. Lett. 2018, 20, 4930−4933. (c) Huang, S.; Li, H.; Sun, X.; Xu,
L.; Wang, L.; Cui, X. Org. Lett. 2019, 21, 5570−5574.
■
S
The Supporting Information is available free of charge at
Detailed description of experiment procedures, charac-
terization data and spectra of products (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for the support from the National Natural
Science Foundation of China (grant nos. 81373259 and
81573286).
(14) (a) Yu, S.; Tang, G.; Li, Y.; Zhou, X.; Lan, Y.; Li, X. Angew.
Chem., Int. Ed. 2016, 55, 8696−700. (b) Li, L.; Wang, H.; Yu, S.;
Yang, X.; Li, X. Org. Lett. 2016, 18, 3662−3665. (c) Mishra, N. K.;
Jeon, M.; Oh, Y.; Jo, H.; Park, J.; Han, S.; Sharma, S.; Han, S. H.;
Jung, Y. H.; Kim, I. S. Org. Chem. Front. 2017, 4, 241−249. (d) Kim,
S.; Han, S. H.; Mishra, N. K.; Chun, R.; Jung, Y. H.; Kim, H. S.; Park,
J. S.; Kim, I. S. Org. Lett. 2018, 20, 4010−4014. (e) Wang, M.; Kong,
L.; Wang, F.; Li, X. Adv. Synth. Catal. 2017, 359, 4411−4416.
(15) Lai, R.; Wu, X.; Lv, S.; Zhang, C.; He, M.; Chen, Y.; Wang, Q.;
Hai, L.; Wu, Y. Chem. Commun. 2019, 55, 4039−4042.
(16) (a) Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Chem. Rev. 2017, 117,
6929−6983. (b) Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008,
108, 206−237.
(17) (a) Liu, Y.; Hu, Y.; Lv, G.; Nie, R.; Peng, Y.; Zhang, C.; Lv, S.;
Hai, L.; Wang, H.; Wu, Y. ACS Sustainable Chem. Eng. 2019, 7,
13425−13429. (b) Lv, S.; Li, Y.; Yao, T.; Yu, X.; Zhang, C.; Hai, L.;
Wu, Y. Org. Lett. 2018, 20, 4994−4997. (c) Ma, Q.; Yu, X.; Lai, R.;
Lv, S.; Dai, W.; Zhang, C.; Wang, X.; Wang, Q.; Wu, Y. ChemSusChem
2018, 11, 3672−3678. (d) Zhang, C.; Chen, X.; Luo, Y.; Li, J.; Chen,
M.; Hai, L.; Wu, Y. ACS Sustainable Chem. Eng. 2018, 6, 13473−
13479.
(18) (a) Yu, S.; Li, Y.; Zhou, X.; Wang, H.; Kong, L.; Li, X. Org. Lett.
2016, 18, 2812−2815. (b) Jeon, M.; Park, J.; Dey, P.; Oh, Y.; Oh, H.;
Han, S.; Um, S. H.; Kim, H. S.; Mishra, N. K.; Kim, I. S. Adv. Synth.
Catal. 2017, 359, 3471−3478. (c) Zeng, Z.; Jin, H.; Sekine, K.;
Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed.
2018, 57, 6935−6939. (d) Wu, X.; Xiao, Y.; Sun, S.; Yu, J. T.; Cheng,
J. Org. Lett. 2019, 21, 6653−6657. (e) Yao, T.; Du, K. ACS
Sustainable Chem. Eng. 2019, 7, 6068−6077. (f) Li, Y.; Qi, Z.; Wang,
H.; Yang, X.; Li, X. Angew. Chem., Int. Ed. 2016, 55, 11877−11881.
REFERENCES
■
̌
́
(1) (a) Hranjec, M.; Kralj, M.; Piantanida, I.; Sedic, M.; Suman, L.;
́
Pavelic, K.; Karminski-Zamola, G. J. Med. Chem. 2007, 50, 5696−
5711. (b) Sedic, M.; Poznic, M.; Gehrig, P.; Scott, M.; Schlapbach, R.;
Hranjec, M.; Karminski-Zamola, G.; Pavelic, K.; Pavelic, S. K. Mol.
Cancer Ther. 2008, 7, 2121−2132. (c) Perin, N.; Uzelac, L.;
Piantanida, I.; Karminski-Zamola, G.; Kralj, M.; Hranjec, M. Bioorg.
Med. Chem. 2011, 19, 6329−6339. (d) Brajsa, K.; Vujasinovic, I.; Jelic,
D.; Trzun, M.; Zlatar, I.; Karminski-Zamola, G.; Hranjec, M. J. J.
́
Enzyme Inhib. Med. Chem. 2016, 31, 1139−1145. (e) Perin, N.; Alic,
J.; Liekens, S.; Van Aerschot, A.; Vervaeke, P.; Gadakh, B.; Hranjec,
M. New J. Chem. 2018, 42, 7096−7104. (f) Hranjec, M.; Pavlovic, G.;
Marjanovic, M.; Kralj, M.; Karminski-Zamola, G. Eur. J. Med. Chem.
2010, 45, 2405−17. (g) Perin, N.; Nhili, R.; Cindric, M.; Bertosa, B.;
Vusak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj,
M.; David-Cordonnier, M. H.; Hranjec, M. Eur. J. Med. Chem. 2016,
122, 530−545. (h) Perin, N.; Martin-Kleiner, I.; Nhili, R.; Laine, W.;
David-Cordonnier, M. H.; Vugrek, O.; Karminski-Zamola, G.; Kralj,
M.; Hranjec, M. MedChemComm 2013, 4, 1537−1550.
(2) Morgan, G.; Stewart, J. J. Chem. Soc. 1938, 1292−1305.
(3) Venkatesh, C.; Sundaram, G. S. M.; Ila, H.; Junjappa, H. J. Org.
Chem. 2006, 71, 1280−1283.
(4) (a) Rasheed, S.; Rao, D. N.; Das, P. J. Org. Chem. 2015, 80,
9321−7. (b) Masters, K. S.; Rauws, T. R.; Yadav, A. K.; Herrebout,
W. A.; Van der Veken, B.; Maes, B. U. Chem. - Eur. J. 2011, 17, 6315−
6320. (c) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am.
Chem. Soc. 2010, 132, 13217−13219.
(5) (a) He, Y.; Huang, J.; Liang, D.; Liu, L.; Zhu, Q. Chem. Commun.
2013, 49, 7352−7354. (b) Rao, D. N.; Rasheed, S.; Vishwakarma, R.
A.; Das, P. RSC Adv. 2014, 4, 25600−25604. (c) Manna, S.; Matcha,
K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 8163−8166.
D
Org. Lett. XXXX, XXX, XXX−XXX