Page 23 of 34
Bioconjugate Chemistry
1
2
3
4
5
15. Tinianow, J. N., Gill, H. S., Ogasawara, A., Flores, J. E., Vanderbilt, A. N., Luis, E.,
89
Vandlen, R., Darwish, M., Junutula, J. R., Williams, et al. (2010) Site-specifically Zr-
6
7
8
9
labeled monoclonal antibodies for ImmunoPET. Nucl. Med. Biol. 37, 289–297
16. Li, L., Crow, D., Turatti, F., Bading, J. R., Anderson, A.-L., Poku, E., Yazaki, P. J.,
Carmichael, J., Leong, D., Wheatcroft, M. P., et al. (2011) Site-specific conjugation of
monodispersed DOTA-PEGn to a thiolated diabody reveals the effect of increasing PEG
size on kidney clearance and tumor uptake with improved 64-Copper PET imaging.
Bioconjug. Chem. 22, 709–716
17. Khalili, H., Godwin, A., Choi, J., Lever, R. & Brocchini, S. (2012) Comparative binding of
disulfide-bridged PEG-Fabs. Bioconjug. Chem. 23, 2262–2277
18. Koniev, O. & Wagner, A. (2015) Developments and recent advancements in the field of
endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc.
Rev. 44, 5495–5551
19. Toda, N., Asano, S. & Barbas, C. F. (2013) Rapid, stable, chemoselective labeling of thiols
with Julia–Kocieński-like reagents: A serum-stable alternative to maleimide-based protein
conjugation. Angew. Chem. Int. Ed. 52, 12592–12596
20. Patterson, J. T., Asano, S., Li, X., Rader, C. & Barbas, C. F. (2014) Improving the serum
stability of site-specific antibody conjugates with sulfone linkers. Bioconjug. Chem. 25,
1402–1407
21. Zhang, Q., Dall’Angelo, S., Fleming, I. N., Schweiger, L. F., Zanda, M. & O’Hagan, D.
(2016) Last-step enzymatic [18F]-fluorination of cysteine-tethered RGD peptides using
modified Barbas linkers. Chem. – Eur. J. 22, 10998–11004
22. Chiotellis, A., Sladojevich, F., Mu, L., Herde, A. M., Valverde, I. E., Tolmachev, V.,
Schibli, R., Ametamey, S. M. & Mindt, T. L. (2016) Novel chemoselective 18F-
radiolabeling of thiol-containing biomolecules under mild aqueous conditions. Chem.
Commun. 52, 6083–6086
23. Deri, M. A., Zeglis, B. M., Francesconi, L. C. & Lewis, J. S. (2013) PET imaging with 89Zr:
from radiochemistry to the clinic. Nucl. Med. Biol. 40, 3–14
24. Jauw, Y. W. S., M. der H. van Oordt, W. C., Hoekstra, O. S., Hendrikse, N. H., Vugts, D. J.,
Zijlstra, J. M., Huisman, M. C., van Dongen, G. A. M. S. (2016) Immuno-positron emission
tomography with Zirconium-89-labeled monoclonal antibodies in oncology: What can we
learn from initial clinical trials? Front. Pharmacol. 7:131, 1-15
25. Banerjee, S., Pillai, M. R. A. & Knapp, F. F. (Russ). (2015) Lutetium-177 therapeutic
radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem.
Rev. 115, 2934–2974
26. Fischer, G., Seibold, U., Schirrmacher, R., Wängler, B. & Wängler, C. (2013) 89Zr, a
radiometal nuclide with high potential for molecular imaging with PET: chemistry,
applications and remaining challenges. Molecules 18, 6469–6490
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
27. Parus, J. L., Pawlak, D. & Duatti, R. M. and A. (2015) Chemistry and bifunctional chelating
agents for binding 177Lu. Curr. Radiopharm. 8, 86–94
ACS Paragon Plus Environment