COMMUNICATIONS
d 208.[19] In the 1,3-diethynylallenes, this resonance appears
further downfield at d 215 ± 217 in (Æ)-7a ± c and at d
222.6 in (Æ)-7d. The terminal allenic resonance in (Æ)-7a ±
d is located between d 99 and 102, whereas the acetylenic
signals appear between d 92 and 97 (Table 1).
[1] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000, 112,
2740 ± 2767; Angew. Chem. Int. Ed. 2000, 39, 2632 ± 2657.
[2] a) L. T. Scott, M. J. Cooney in Modern Acetylene Chemistry (Eds.: P. J.
Stang, F. Diederich), VCH, Weinheim, 1995, pp. 321 ± 351; b) J. S.
Moore, Acc. Chem. Res. 1997, 30, 402 ± 413; c) U. H. F. Bunz, Y. Rubin,
Y. Tobe, Chem. Soc. Rev. 1999, 28, 107 ± 119; d) W. J. Youngs, C. A.
Tessier, J. D. Bradshaw, Chem. Rev. 1999, 99, 3153 ± 3180; e) A.
de Meijere, S. I. Kozhushkov, Top. Curr. Chem. 1999, 201, 1 ± 42;
f) M. M. Haley, J. J. Park, S. C. Brand, Top. Curr. Chem. 1999, 201, 81 ±
130; g) U. H. F. Bunz, Top. Curr. Chem. 1999, 201, 131 ± 161; h) J. M.
Tour, Acc. Chem. Res. 2000, 33, 791 ± 804; i) H. Hopf, Classics in
Hydrocarbon Chemistry, Wiley-VCH, Weinheim, 2000.
Table 1. Selected physical and spectroscopic data of 1,3-diethynylallenes.
(Æ)-7a: Rf(SiO2) 0.45 (hexane/CH2Cl2 4:1); white solid; m.p. 56 ± 578C;
IR (film): nÄ 2944, 2891, 2147, 1944, 1464, 1388, 1361, 1333, 1254, 1111, 994,
878, 833, 779, 667 cm 1; 1H NMR (300 MHz, CDCl3): d 4.20 (s, 4H), 1.07
(s, 42H), 0.89 (s, 18H), 0.08 (s, 12H); 13C NMR (75 MHz, CDCl3): d
214.9, 98.7, 95.9, 95.1, 64.1, 25.7, 18.5, 18.1, 11.2, 5.4, 5.5; EI-MS: m/z:
[3] a) R. R. Tykwinski, F. Diederich, Liebigs Ann. 1997, 649 ± 661; b) F.
Diederich, L. Gobbi, Top. Curr. Chem. 1999, 201, 43 ± 79; c) F.
Diederich, Chem. Commun. 2001, 219 ± 227.
688.4 [M ]; elemental analysis calcd for C39H76O2Si4 (689.38) (%): C 67.95,
[4] M. J. Edelmann, M. A. Estermann, V. Gramlich, F. Diederich, Helv.
Chim. Acta 2001, 84, 473 ± 480.
[5] M. B. Nielsen, M. Schreiber, Y. G. Baek, P. Seiler, S. Lecomte, C.
Boudon, R. R. Tykwinski, J.-P. Gisselbrecht, V. Gramlich, P. J.
Skinner, C. Bosshard, P. Günter, F. Diederich, Chem. Eur. J. 2001, 7,
issue 15.
[6] a) L. Gobbi, P. Seiler, F. Diederich, Angew. Chem. 1999, 111, 740 ± 743;
Angew. Chem. Int. Ed. 1999, 38, 674 ± 678; b) L. Gobbi, P. Seiler, F.
Diederich, V. Gramlich, Helv. Chim. Acta 2000, 83, 1711 ± 1723.
[7] J.-D. van Loon, P. Seiler, F. Diederich, Angew. Chem. 1993, 105, 1235 ±
1238; Angew. Chem. Int. Ed. Engl. 1993, 32, 1187 ± 1189.
[8] During an attempted preparation of tetraethynylmethane, evidence
for the formation of 1,1,3-triethynylallene in a mixture of products was
obtained: A. H. Alberts, H. Wynberg, J. Chem. Soc. Chem. Commun.
1988, 748 ± 749. For some syntheses of other acetylenic allenes, see
a) P. D. Landor in The Chemistry of the Allenes, Vol. 1 (Ed.: S. R.
Landor), Academic Press, New York, 1982, pp. 229 ± 233; b) H. F.
Schuster, G. M. Coppola in Allenes in Organic Synthesis, Wiley, New
York, 1984, pp. 114 ± 125.
H 11.11; found: C 67.85, H 11.13
(Æ)-7b: Rf(SiO2) 0.60 (hexane); colorless oil; IR (film): nÄ 2927, 2851,
2133, 1933, 1464, 1380, 1154, 1072, 990, 883, 672 cm 1; 1H NMR (200 MHz,
CDCl3): d 2.15 (t, J 7.1 Hz, 4H), 1.58 ± 1.43 (m, 4H), 1.40 ± 1.22 (m,
12H), 1.07 (s, 42H), 0.88 (t, J 6.6 Hz, 6H); 13C NMR (50 MHz, CDCl3):
d 216.2, 101.7, 92.6, 91.8, 34.1, 31.6, 28.2, 27.4, 22.4, 18.5, 14.0, 11.2; EI-
MS: m/z: 568.6 [M ]; elemental analysis calcd for C37H68Si2 (569.12) (%): C
78.09, H 12.04; found: C 78.22, H 12.08
(Æ)-7c: Rf(SiO2) 0.47 (hexane/EtOAc 10:1); colorless oil; IR (film): nÄ
2943, 2851, 2133, 1939, 1611, 1512, 1464, 1303, 1248, 1174, 1039, 883, 815,
677 cm 1; 1H NMR (200 MHz, CDCl3): d 7.00 (d, J 8.7 Hz, 4H), 6.75 (d,
J 8.7 Hz, 4H), 3.78 (s, 6H), 3.34 (s, 2H), 3.33 (s, 2H), 1.03 (s, 42H);
13C NMR (75 MHz, CDCl3): d 216.9, 158.4, 130.2, 130.0, 113.6, 101.0, 93.9,
93.2, 55.1, 39.8, 18.4, 11.1; EI-MS: m/z: 640.3 [M ]; HR-EI-MS calcd for
C41H60O2Si2 [M ]: 640.4132; found 640.4129
(Æ)-7d: Rf(SiO2) 0.65 (hexane/CH2Cl2 10:1); yellow oil; IR (film): nÄ
2944, 2862, 2144, 1944, 1492, 1462, 1062, 990, 882, 759, 676 cm 1; 1H NMR
(300 MHz, CDCl3): d 7.65 ± 7.61 (m, 2H), 7.40 ± 7.27 (m, 8H), 1.15 (s,
42H); 13C NMR (75 MHz, CDCl3): d 222.6, 132.7, 128.7, 128.2, 126.8,
98.7, 97.6, 97.3, 18.5, 11.2. For the [22] dimer of (Æ)-7d: EI-MS: m/z:
[9] a) J.-D. van Loon, P. Seiler, F. Diederich, Angew. Chem. 1993, 105,
1817 ± 1820; Angew. Chem. Int. Ed. Engl. 1993, 32, 1706 ± 1709; b) T.
Lange, J.-D. van Loon, R. R. Tykwinski, M. Schreiber, F. Diederich,
Synthesis 1996, 537 ± 550.
1104.7 [M ]; elemental analysis calcd for C74H104Si4 (1106.00) (%): C 80.36,
H 9.48; found: C 80.17, H 9.34
[10] Preliminary AM1 geometry optimizations (MacSpartan Pro, Wave-
function, Inc., Irvine, CA 92612, 2000) suggest favorable helical
conformations for a dodecamer formed by oxidative coupling of the
parent 1,3-diethynylallene ((Æ)-3, R H).
These first representative examples show how the overall
stability of 1,3-diethynylallenes is affected by the electronic
and steric properties of the substituents. The substantial
stability of compound (Æ)-7a clearly demonstrates that bulky
side chains prevent the approach of two allene units and are
capable of mitigating the undesired thermal [22] cyclo-
addition to an appreciable extent. Since removal of the
alkyne-protecting SiiPr3 groups from (Æ)-7b with Bu4NF
cleanly yields the corresponding bis-terminally deprotected
[11] For some recent examples, see: a) D. S. Schlitzer, B. M. Novak, J. Am.
Chem. Soc. 1998, 120, 2196 ± 2197; b) T. Takata, Y. Furusho, K.
Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, M. Sisido, J.
Am. Chem. Soc. 1998, 120, 4530 ± 4531; c) M. J. Mio, R. B. Prince, J. S.
Moore, C. Kubel, D. C. Martin, J. Am. Chem. Soc. 2000, 122, 6134 ±
6135.
[12] a) B. M. W. Langeveld-Voss, R. A. J. Janssen, M. P. T. Christiaans,
S. C. J. Meskers, H. P. J. M. Dekkers, E. W. Meijer, J. Am. Chem. Soc.
1996, 118, 4908 ± 4909; b) E. Peeters, M. P. T. Christiaans, R. A. J.
Janssen, H. F. M. Schoo, H. P. J. M. Dekkers, E. W. Meijer, J. Am.
Chem. Soc. 1997, 119, 9909 ± 9910.
diethynylallene (1H NMR spectrum (CDCl3): dCꢀ 2.94),
C-H
oxidative oligomerization of enantiomerically pure 1,3-diethy-
nylallenes is expected to lead to the proposed helical
oligomers with unusual chiroptical properties.
Â
[13] G. Solladie, R. G. Zimmermann, Angew. Chem. 1984, 96, 335 ± 349;
Angew. Chem. Int. Ed. Engl. 1984, 23, 348 ± 362.
[14] a) T. Jeffery-Luong, G. Linstrumelle, Tetrahedron Lett. 1980, 21,
5019 ± 5020; b) K. Ruitenberg, H. Kleijn, C. J. Elsevier, J. Meijer, P.
Vermeer, Tetrahedron Lett. 1981, 22, 1451 ± 1452; c) H. Kleijn, J.
Meijer, G. C. Overbeek, P. Vermeer, Recl. Trav. Chim. Pays-Bas 1982,
101, 97 ± 101; d) E. A. Oostveen, C. J. Elsevier, J. Meijer, P. Vermeer,
Recl. Trav. Chim. Pays-Bas 1982, 101, 382 ± 385; e) K. Ruitenberg, H.
Kleijn, H. Westmijze, J. Meijer, P. Vermeer, Recl. Trav. Chim. Pays-
Bas 1982, 101, 405 ± 409; f) C. J. Elsevier, P. M. Stehouwer, H.
Westmijze, P. Vermeer, J. Org. Chem. 1983, 48, 1103 ± 1105; g) C. J.
Elsevier, H. Kleijn, K. Ruitenberg, P. Vermeer, J. Chem. Soc. Chem.
Commun. 1983, 1529 ± 1530; h) W. de Graaf, A. Smits, J. Boersma, G.
van Koten, W. P. M. Hoekstra, Tetrahedron 1988, 44, 6699 ± 6704; i) T.
Mandai, T. Nakata, H. Murayama, H. Yamaoki, M. Ogawa, M.
Kawada, J. Tsuji, Tetrahedron Lett. 1990, 31, 7179 ± 7180; j) T. Mandai,
H. Murayama, T. Nakata, H. Yamaoki, M. Ogawa, M. Kawada, J.
Tsuji, J. Organomet. Chem. 1991, 417, 305 ± 311; k) S. Gueugnot, G.
Linstrumelle, Tetrahedron Lett. 1993, 34, 3853 ± 3856; l) P. H. Dixneuf,
Experimental Section
ꢀ
(Æ)-7b: iPr3SiC CH (34 mL, 27 mg, 0.15 mmol) and HNiPr2 (28 mL, 20 mg,
0.20 mmol) were added to (Æ)-8 (46 mg, 0.10 mmol) in CH2Cl2 (1 mL) at
room temperature. The solution was purged with Ar for several minutes,
and [Pd(PPh3)4] (5.8 mg, 5.0 mmol) and CuI (1.9 mg, 10 mmol) were added
sequentially. After an additional minute of degassing, the solution was
allowed to stir at room temperature for 30 min, at which point TLC showed
complete conversion. The mixture was diluted with hexanes (5 mL) and
filtered through celite. The solvent was removed under reduced pressure,
and the residue was purified by flash chromatography on SiO2 (hexane) to
give (Æ)-7b (54 mg, 94%) as a clear oil.
Received: February 19, 2001 [Z16640]
2336
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4012-2336 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 12